43 research outputs found

    Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course.

    Get PDF
    abstract Background: Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect ofBMI on the epigenome ofmono- cytesand diseasecourseinMS. Methods: Fifty-four therapy-naive Relapsing Remitting (RR)MS patientswith high and normal BMI received clin- ical andMRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-naĂŻve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models ofMS. Findings: Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation ofcell proliferationwere detected in the high BMI group ofMSpatients compared to normal BMI. Cer- amide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group ofMS patients showed a negative correlation be- tween monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models ofMS. Interpretation: High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes

    Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course

    Get PDF
    Background: Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect of BMI on the epigenome of monocytes and disease course in MS. Methods: Fifty-four therapy-naive Relapsing Remitting (RR) MS patients with high and normal BMI received clinical and MRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-na\uefve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models of MS. Findings: Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation of cell proliferation were detected in the high BMI group of MS patients compared to normal BMI. Ceramide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group of MS patients showed a negative correlation between monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models of MS. Interpretation: High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes. Fund: This work was supported by funds from the Friedman Brain Institute, NIH, and Multiple Sclerosis Society

    Endometriosis and Headache

    Get PDF
    Headache and endometriosis show some similarities in their clinical and epidemiological features that are probably due to the influence of female sexual hormones on both disorders. Epidemiological studies indicate that they are comorbid disorders. However, the nature of the comorbidity is not known with certainty, but a likely explanation may be common susceptibility genes. Another possibility is that, because they both are related to pain, increased pain sensitivity induced by one of the disorders may lead to a higher likelihood of developing the other, possibly mediated by nitrogen oxide or prostaglandins. A common link to the widespread use of estroprogestins may seem less probable. For physicians dealing with women with either of these disorders, awareness of the comorbidity may be helpful in the treatment of the patient

    Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea

    Get PDF
    Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water’s chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea−Dead Sea water conduit

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Brain microstructural injury occurs in patients with RRMS despite 'no evidence of disease activity'

    No full text
    Objectives The accuracy of 'no evidence of disease activity' (NEDA) in predicting long-term clinical outcome in patients with relapsing remitting multiple sclerosis (RRMS) is unproven, and there is growing evidence that NEDA does not rule out disease worsening. We used diffusion tensor imaging (DTI) to investigate whether ongoing brain microstructural injury occurs in patients with RRMS meeting NEDA criteria. Methods We performed a retrospective study to identify patients with RRMS visiting our centre over a 3-month period who had undergone prior longitudinal DTI evaluation at our facility spanning &gt;= 2 years. Patients meeting NEDA criteria throughout the evaluation period were included in the NEDA group, and those not meeting NEDA criteria were included in an 'evidence of disease activity' (EDA) group. Fractional anisotropy (FA) and mean diffusivity (MD) maps were created, and annual rates of change were calculated. Results We enrolled 85 patients, 39 meeting NEDA criteria. Both NEDA and EDA groups showed longitudinal DTI worsening. Yearly FA decrease was lower in the NEDA group (0.5%, p&lt;0.0001) than in the EDA group (1.2%, p=0.003), while yearly MD increase was similar in both groups (0.8% for NEDA and EDA, both p&lt;0.01). There was no statistical difference in deterioration within and outside of T2 lesions. DTI parameters correlated with disability scores and fatigue complaints. Conclusions White matter microstructural deterioration occurs in patients with RRMS over short-term follow-up in patients with NEDA, providing further evidence of the limitations of conventional measures and arguing for DTI in monitoring of the disease process

    Brain microstructural injury occurs in patients with RRMS despite 'no evidence of disease activity'

    No full text
    Objectives The accuracy of \u20acno evidence of disease activity' (NEDA) in predicting long-term clinical outcome in patients with relapsing remitting multiple sclerosis (RRMS) is unproven, and there is growing evidence that NEDA does not rule out disease worsening. We used diffusion tensor imaging (DTI) to investigate whether ongoing brain microstructural injury occurs in patients with RRMS meeting NEDA criteria. Methods We performed a retrospective study to identify patients with RRMS visiting our centre over a 3-month period who had undergone prior longitudinal DTI evaluation at our facility spanning 652 years. Patients meeting NEDA criteria throughout the evaluation period were included in the NEDA group, and those not meeting NEDA criteria were included in an \u20ac evidence of disease activity' (EDA) group. Fractional anisotropy (FA) and mean diffusivity (MD) maps were created, and annual rates of change were calculated. Results We enrolled 85 patients, 39 meeting NEDA criteria. Both NEDA and EDA groups showed longitudinal DTI worsening. Yearly FA decrease was lower in the NEDA group (0.5%, p&lt;0.0001) than in the EDA group (1.2%, p=0.003), while yearly MD increase was similar in both groups (0.8% for NEDA and EDA, both p&lt;0.01). There was no statistical difference in deterioration within and outside of T2 lesions. DTI parameters correlated with disability scores and fatigue complaints. Conclusions White matter microstructural deterioration occurs in patients with RRMS over short-term follow-up in patients with NEDA, providing further evidence of the limitations of conventional measures and arguing for DTI in monitoring of the disease process
    corecore