139 research outputs found

    Solar energy storage at an atomically defined organic-oxide hybrid interface

    Get PDF
    Molecular photoswitches provide an extremely simple solution for solar energy conversion and storage. To convert stored energy to electricity, however, the photoswitch has to be coupled to a semiconducting electrode. In this work, we report on the assembly of an operational solar-energy-storing organic-oxide hybrid interface, which consists of a tailor-made molecular photoswitch and an atomically-defined semiconducting oxide film. The synthesized norbornadiene derivative 2-cyano-3-(4-carboxyphenyl)norbornadiene (CNBD) was anchored to a well-ordered Co3O4(111) surface by physical vapor deposition in ultrahigh vacuum. Using a photochemical infrared reflection absorption spectroscopy experiment, we demonstrate that the anchored CNBD monolayer remains operational, i.e., can be photo-converted to its energy-rich counterpart 2-cyano-3-(4-carboxyphenyl)quadricyclane (CQC). We show that the activation barrier for energy release remains unaffected by the anchoring reaction and the anchored photoswitch can be charged and discharged with high reversibility. Our atomically-defined solar-energy-storing model interface enables detailed studies of energy conversion processes at organic/oxide hybrid interfaces

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    The C-Type Lectin of the Aggrecan G3 Domain Activates Complement

    Get PDF
    Excessive complement activation contributes to joint diseases such as rheumatoid arthritis and osteoarthritis during which cartilage proteins are fragmented and released into the synovial fluid. Some of these proteins and fragments activate complement, which may sustain inflammation. The G3 domain of large cartilage proteoglycan aggrecan interacts with other extracellular matrix proteins, fibulins and tenascins, via its C-type lectin domain (CLD) and has important functions in matrix organization. Fragments containing G3 domain are released during normal aggrecan turnover, but increasingly so in disease. We now show that the aggrecan CLD part of the G3 domain activates the classical and to a lesser extent the alternative pathway of complement, via binding of C1q and C3, respectively. The complement control protein (CCP) domain adjacent to the CLD showed no effect on complement initiation. The binding of C1q to G3 depended on ionic interactions and was decreased in D2267N mutant G3. However, the observed complement activation was attenuated due to binding of complement inhibitor factor H to CLD and CCP domains. This was most apparent at the level of deposition of terminal complement components. Taken together our observations indicate aggrecan CLD as one factor involved in the sustained inflammation of the joint

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    LICC: L-BLP25 in patients with colorectal carcinoma after curative resection of hepatic metastases--a randomized, placebo-controlled, multicenter, multinational, double-blinded phase II trial

    Get PDF
    Background: 15-20% of all patients initially diagnosed with colorectal cancer develop metastatic disease and surgical resection remains the only potentially curative treatment available. Current 5-year survival following R0-resection of liver metastases is 28-39%, but recurrence eventually occurs in up to 70%. To date, adjuvant chemotherapy has not improved clinical outcomes significantly. The primary objective of the ongoing LICC trial (L-BLP25 In Colorectal Cancer) is to determine whether L-BLP25, an active cancer immunotherapy, extends recurrence-free survival (RFS) time over placebo in colorectal cancer patients following R0/R1 resection of hepatic metastases. L-BLP25 targets MUC1 glycoprotein, which is highly expressed in hepatic metastases from colorectal cancer. In a phase IIB trial, L-BLP25 has shown acceptable tolerability and a trend towards longer survival in patients with stage IIIB locoregional NSCLC. Methods: This is a multinational, phase II, multicenter, randomized, double-blind, placebo-controlled trial with a sample size of 159 patients from 20 centers in 3 countries. Patients with stage IV colorectal adenocarcinoma limited to liver metastases are included. Following curative-intent complete resection of the primary tumor and of all synchronous/metachronous metastases, eligible patients are randomized 2:1 to receive either L-BLP25 or placebo. Those allocated to L-BLP25 receive a single dose of 300 mg/m2 cyclophosphamide (CP) 3 days before first L-BLP25 dose, then primary treatment with s.c. L-BLP25 930 mug once weekly for 8 weeks, followed by s.c. L-BLP25 930 mug maintenance doses at 6-week (years 1&2) and 12-week (year 3) intervals unless recurrence occurs. In the control arm, CP is replaced by saline solution and L-BLP25 by placebo. Primary endpoint is the comparison of recurrence-free survival (RFS) time between groups. Secondary endpoints are overall survival (OS) time, safety, tolerability, RFS/OS in MUC-1 positive cancers. Exploratory immune response analyses are planned. The primary endpoint will be assessed in Q3 2016. Follow-up will end Q3 2017. Interim analyses are not planned. Discussion: The design and implementation of such a vaccination study in colorectal cancer is feasible. The study will provide recurrence-free and overall survival rates of groups in an unbiased fashion. Trial Registration EudraCT Number 2011-000218-2

    Enhancing the relevance of Shared Socioeconomic Pathways for climate change impacts, adaptation and vulnerability research

    Get PDF
    This paper discusses the role and relevance of the shared socioeconomic pathways (SSPs) and the new scenarios that combine SSPs with representative concentration pathways (RCPs) for climate change impacts, adaptation, and vulnerability (IAV) research. It first provides an overview of uses of social–environmental scenarios in IAV studies and identifies the main shortcomings of earlier such scenarios. Second, the paper elaborates on two aspects of the SSPs and new scenarios that would improve their usefulness for IAV studies compared to earlier scenario sets: (i) enhancing their applicability while retaining coherence across spatial scales, and (ii) adding indicators of importance for projecting vulnerability. The paper therefore presents an agenda for future research, recommending that SSPs incorporate not only the standard variables of population and gross domestic product, but also indicators such as income distribution, spatial population, human health and governance

    Arecibo PALFA survey and Einstein@Home: Binary pulsar discovery by volunteer computing

    Get PDF
    We report the discovery of the 20.7ms binary pulsar J1952+2630, made using the distributed computing project Einstein@Home in Pulsar ALFA survey observations with the Arecibo telescope. Follow-up observations with the Arecibo telescope confirm the binary nature of the system. We obtain a circular orbital solution with an orbital period of 9.4hr, a projected orbital radius of 2.8lt-s, and a mass function of f = 0.15 M ⊙ by analysis of spin period measurements. No evidence of orbital eccentricity is apparent; we set a 2σ upper limit e ≲ 1.7 × 10 -3 . The orbital parameters suggest a massive white dwarf companion with a minimum mass of 0.95 M ⊙ , assuming a pulsar mass of 1.4 M ⊙ . Most likely, this pulsar belongs to the rare class of intermediate-mass binary pulsars. Future timing observations will aim to determine the parameters of this system further, measure relativistic effects, and elucidate the nature of the companion star. © 2011. The American Astronomical Society. All rights reserved

    Somatostatin Inhibits Cell Migration and Reduces Cell Counts of Human Keratinocytes and Delays Epidermal Wound Healing in an Ex Vivo Wound Model

    Get PDF
    The peptide hormone somatostatin (SST) and its five G protein-coupled receptors (SSTR1-5) were described to be present in the skin, but their cutaneous function(s) and skin-specific signalling mechanisms are widely unknown. By using receptor specific agonists we show here that the SSTRs expressed in keratinocytes are functionally coupled to the inhibition of adenylate cyclase. In addition, treatment with SSTR4 and SSTR5/1 specific agonists significantly influences the MAP kinase signalling pathway. As epidermal hormone receptors in general are known to regulate re-epithelialization following skin injury, we investigated the effect of SST on cell counts and migration of human keratinocytes. Our results demonstrate a significant inhibition of cell migration and reduction of cell counts by SST. We do not observe an effect on apoptosis and necrosis. Analysis of signalling pathways showed that somatostatin inhibits cell migration independent of its effect on cAMP. Migrating keratinocytes treated with SST show altered cytoskeleton dynamics with delayed lamellipodia formation. Furthermore, the activity of the small GTPase Rac1 is diminished, providing evidence for the control of the actin cytoskeleton by somatostatin receptors in keratinocytes. While activation of all receptors leads to redundant effects on cell migration, only treatment with a SSTR5/1 specific agonist resulted in decreased cell counts. In accordance with reduced cell counts and impaired migration we observe delayed re-epithelialization in an ex vivo wound healing model. Consequently, our experiments suggest SST as a negative regulator of epidermal wound healing
    corecore