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ARTICLE

Solar energy storage at an atomically defined
organic-oxide hybrid interface
Christian Schuschke 1, Chantal Hohner 1, Martyn Jevric2, Anne Ugleholdt Petersen2, Zhihang Wang2,

Matthias Schwarz1, Miroslav Kettner1, Fabian Waidhas1, Lukas Fromm3, Christopher J. Sumby4,

Andreas Görling3,5, Olaf Brummel1, Kasper Moth-Poulsen 2 & Jörg Libuda 1,5

Molecular photoswitches provide an extremely simple solution for solar energy conversion

and storage. To convert stored energy to electricity, however, the photoswitch has to be

coupled to a semiconducting electrode. In this work, we report on the assembly of an

operational solar-energy-storing organic-oxide hybrid interface, which consists of a tailor-

made molecular photoswitch and an atomically-defined semiconducting oxide film. The

synthesized norbornadiene derivative 2-cyano-3-(4-carboxyphenyl)norbornadiene (CNBD)

was anchored to a well-ordered Co3O4(111) surface by physical vapor deposition in ultrahigh

vacuum. Using a photochemical infrared reflection absorption spectroscopy experiment, we

demonstrate that the anchored CNBD monolayer remains operational, i.e., can be photo-

converted to its energy-rich counterpart 2-cyano-3-(4-carboxyphenyl)quadricyclane (CQC).

We show that the activation barrier for energy release remains unaffected by the anchoring

reaction and the anchored photoswitch can be charged and discharged with high reversibility.

Our atomically-defined solar-energy-storing model interface enables detailed studies of

energy conversion processes at organic/oxide hybrid interfaces.
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The development of new technologies for solar-energy
conversion and storage is among the grand challenges in
our transition to a renewable energy system1,2. Besides the

conventional technologies, alternative chemical methods can
provide particularly simple solutions for long-term solar-energy
storage. Among these methods is energy storage in molecular
photoswitches3–5, such as the valence couple norbornadiene
(NBD)/quadricyclane (QC)6–15. In this storage couple, the
energy-lean NBD photoisomerizes via an intermolecular
cycloaddition to yield the energy-rich QC. This extremely simple
one-photon-one-molecule reaction allows storing up to 89 kJ/mol
(0.97 MJ/kg) of chemical energy, an energy density that is com-
parable with state-of-the-art batteries.

The NBD–QC system has been proposed to hold great
potential for solar-energy harvesting and storage; however, it also
comes with a number of challenges. Recently, several of these
challenges, which were encountered in earlier research, could
be successfully addressed and the system attracted renewed
attention12,13.

One issue is related to the fact that pristine NBD absorbs light
at wavelengths below 300 nm only. Therefore, photosensitizers
are required to red-shift the absorption8,16. These photo-
sensitizers, however, cause stability issues, not only during pho-
toconversion but also during the catalytically triggered energy
release. Typically, this problem is tackled by using substituted
NBDs that absorb light at much larger wavelength17,18. Such
modifications, however, come at the price of increasing the
molecular weight and, thereby, decreasing the energy density.
Some authors of this work recently suggested a variety of com-
pounds that combine beneficial absorption properties and low
molecular weight18. Alternatively, the energy density can be
increased by attaching more than one NBD unit to a single
chromophore19. A second issue is related to the fact that red-
shifting the absorption maximum of NBD often destabilizes the
corresponding QC isomer. However, this challenge could also be
addressed by molecular design20,21. Recently, macroscopic heat
release from a molecular solar thermal (MOST) storage device
was demonstrated with a reversibility of more than 99.8% per
storage cycle13. The energy release was triggered catalytically
using a carbon-supported cobalt phthalocyanine catalyst.

A particularly fascinating idea is to control the NBD/QC sto-
rage system electrochemically22. Recently, we have shown that the
back conversion can indeed be triggered electrochemically with a
reversibility of 95%, even in the presence of an external photo-
sensitizer23. The electrochemical approach does not only provide
additional control but also holds the potential of converting part
of the stored energy directly to electricity22. In principle, this may
enable the construction of an energy-storing solar cell; however,
the NBD unit would have to be coupled to a semiconducting
electrode, for instance by attaching it via suitable anchor groups
(similar as in a dye-sensitized solar cell).

While anchored NBD films could be prepared recently24, a
functioning energy-storing hybrid interface, consisting of a pho-
toswitchable NBD monolayer bound to an oxide surface, has not
been reported to date. In this work, we demonstrate photo-
chemical switching in an anchored NBD monolayer bound to an
atomically defined oxide surface.

We used a synthesized NBD derivative that features four
functionalities (see Fig. 1): (i) an NBD energy-storage unit,
(ii) push–pull ligands that red-shift the absorption into the near-
visible region, (iii) a spectroscopic marker that allows monitoring
the conversion by in-situ IR spectroscopy, and (iv) a carboxylic
acid linker group for attachment to the oxide. The NBD deriva-
tive is anchored to an atomically defined Co3O4(111) film with a
known surface structure25,26. Both the assembly of the hybrid
interface and the photochemical energy storage experiments were

performed under ultraclean conditions in ultrahigh vacuum
(UHV).

Our work demonstrates that it is possible to build an opera-
tional solar-energy-storing hybrid interface that consists of a
single-anchored NBD monolayer on a well-defined semi-
conducting oxide surface. The interface is stable and photo-
switchable with high reversibility. Our hybrid interface represents
a type of model system, in which both the anchored film and
the oxide surface are well defined at the atomic level. We believe
that the type of model system described herein will enable studies
of energy storage and release processes at such interfaces at a high
level of detail.

Results
Preparation and properties of the model interface. The pho-
toswitchable NBD monolayer was prepared from the NBD deri-
vative 2-cyano-3-(4-carboxyphenyl)norbornadiene (CNBD)
shown in Fig. 1a (see the Methods section for synthesis and
Supplementary Methods for properties). The molecule comprises
four essential functionalities: (i) the NBD storage unit, (ii) the
donor–acceptor substituent pair which red-shifts the light
absorption region, (iii) the CN group which is used as a marker
for IR spectroscopy (see below), and (iv) the carboxylate group
which acts as an anchor for oxide surfaces. Upon irradiation,
CNBD converts to its energy-rich counterpart 2-cyano-3-(4-car-
boxyphenyl)quadricyclane (CQC) storing 0.363 MJ/kg in form of
chemical energy (see Supplementary Methods). CNBD shows an
absorption onset at 378 nm and absorption maximum at 319 nm,
while CQC absorbs at much shorter wavelengths (see Supple-
mentary Methods). Therefore, irradiation with ultraviolet (UV)
light leads to nearly quantitative conversion of CNBD to CQC.

CNBD films were deposited by physical vapor deposition
(PVD) in UHV onto an ordered Co3O4(111) film (see Fig. 1b).
The Co3O4(111) films (thickness 8 nm) were grown on an Ir(100)
single crystal using the procedure introduced by Heinz, Hammer
et al.27. The surface of the Co3O4(111) film has been characterized
in detail by scanning tunneling microscopy (STM) and low-
energy electron diffraction I–V analysis (LEED-IV). It is
terminated by a layer of Co2+ ions in the tetrahedral positions
of the Co3O4 spinel structure (see Fig. 1a). Note that bulk Co3O4

is a semiconducting oxide with a bandgap of 1.6 eV28, while STM
studies suggest that the bandgap is larger for the thin films used in
this work26. In order to verify that CNBD can be evaporated
without decomposition, we deposited a multilayer film onto
Co3O4(111) and compared the infrared reflection absorption
spectrum to the spectrum recorded in transmission (see Fig. 1c).
Identical bands are found in both spectra, indicating that the
deposition of a pure CNBD layer is possible without any
decomposition products detected (note that the splitting of the
carboxyl stretching band at 1700 cm−1 in IRAS indicates dimer
formation on the frozen multilayer).

In order to identify the vibrational bands, we performed density
functional theory (DFT) calculations of the CNBD dimer and
analyzed the corresponding modes (see Supplementary Methods).
The experimental and theoretically calculated band positions and
their assignments are given in Supplementary Table 1. For this
work, the most important feature is the CN stretching band
νCNBD(CN) at 2204 cm−1 (DFT 2209 cm−1). After photoconver-
sion to CQC, the band blue-shifts to 2225 cm−1 (νCQC(CN), DFT
2239 cm−1). This shift can be clearly resolved by IR spectroscopy,
and will be used in this work to follow the interconversion
between the two isomers. The complete IR spectra of CQC
recorded in reflection and transmission modes and the spectrum
calculated by DFT are shown in Fig. 1d. The band positions and
assignments are also given in Supplementary Table 1.
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Fig. 1 The molecular photoswitch used in this study: a molecular structures of the energy-lean isomer CNBD and the energy-rich isomer CQC; b schematic
representation of the in-situ photochemical IRAS setup in UHV used in this work; c IR spectra of CNBD (from top to bottom): IR spectrum calculated by
DFT, IR reflection absorption spectrum of CNBD multilayer deposited by PVD referenced to a background of a clean sample, IR transmission spectrum of
CNBD in KBr; d IR spectra of CQC (from top to bottom): IR spectrum calculated by DFT, IR reflection absorption spectrum of CQC multilayer deposited by
PVD referenced to a background of a clean sample, IR transmission spectrum of CQC in KBr
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Growth of CNBD films on Co3O4(111). In the next step, we
investigated the growth of CNBD films on Co3O4(111). In Fig. 2a,
infrared reflection absorption spectra are displayed, which were
recorded during the deposition of a multilayer film at 110 K. At

the initial stage of deposition, the IR spectra are dominated by a
broad band at 1400 cm−1, while the ν(C=O) band of the car-
boxylic acid at 1700 cm−1 is the most intense feature at larger
exposure. The band at 1400 cm−1 is attributed to the symmetric
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Fig. 2 Preparation and stability of CNBD films on an ordered Co3O4(111) surface: a in-situ IRAS during PVD of a CNBD multilayer on Co3O4(111) at sample
temperature 110 K (orange squares: total intensity, green circles: intensity of ν(C=O) band of CNBD); b temperature-programmed IRAS after deposition
of a CNBD multilayer showing the stability regions of the multilayer and monolayer; c preparation of an anchored monolayer by PVD of CNBD onto
Co3O4(111) at a sample temperature of 350 K, i.e. above the multilayer desorption temperature (orange squares: the total intensity, green circles: intensity
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stretching mode νs(OCO) of a surface-bound carboxylate24,29,30.
It indicates that CNBD anchors to the surface by deprotonation
and formation of a chelating surface carboxylate that is attached
to the surface Co2+ ions. After completion of the anchored
monolayer, a multilayer of non-anchored CNBD starts to grow,
as indicated by the appearance of the ν(C=O) band of the
CNBD (see inset in Fig. 2a).

The thermal behavior of the CNBD multilayer film was probed
by temperature-programmed (TP) IRAS, as shown in Fig. 2b.
Here, IR spectra were recorded continuously, while the film was
heated at a constant rate of 2 K.min−1. We observe a sudden
decrease of all bands of the free CNBD at 280 K, which we
attribute to desorption of the multilayer. The characteristic
νs(OCO) band of the surface-bound carboxylate is visible up to
570 K, indicating that the anchored CNBD monolayer resides on
the surface up to this temperature. At higher temperature, several
weaker bands are observed, which we attribute to decomposition
products of CNBD formed at higher temperature. The behavior is
consistent with other carboxylate films, studied previously on the
same surface24,31.

As the anchored CNBD monolayer is stable between 280 K and
570 K, it should be possible to prepare a pure anchored
monolayer film by PVD at surface temperatures in this range.
The corresponding experiment is shown in Fig. 2c, where CNBD
was deposited at a sample temperature of 350 K. All bands show a
saturation behavior, with the νs(OCO) band of the surface
carboxylate being the dominating feature. We conclude that an
anchored monolayer is formed. No indication is observed for the
adsorption of CNBD molecules that are not anchored to the
surface.

Photochemical conversion of CNBD. In the next step, we
investigated the photoconversion of CNBD films using a photo-
chemical UHV IRAS setup that was recently developed by some
of the authors (see Fig. 1b). The experimental procedure is illu-
strated in Fig. 3a. The film was exposed to exponentially
increasing doses of UV light (irradiation times: 0.01 s, 0.04 s,
0.16 s,…, 655.36 s), with each step followed by the acquisition of
an IR spectrum. We used a UV source with a wavelength of
365 nm with an estimated power density of 920 mW.cm−2 at the
sample surface32. The development in the spectral region of the ν
(CN) band is shown in Fig. 3b for a thick multilayer film
(140 monolayer equivalents, ML), a thin multilayer film (6ML),
and a single-anchored monolayer (1 ML). In all cases, we observe
the disappearance of the νCNBD(CN) band at 2204 cm−1 and the
appearance of the νCQC(CN) band at 2225 cm−1 upon irradiation,
clearly showing that conversion of CNBD to CQC is possible,
both in the multilayer and in the monolayer regimes.

Next, the photochemical conversion was analyzed quantita-
tively. We show three quantities that were calculated from the
above spectra: the fraction of CNBD remaining as a function of
irradiation time (Fig. 3c), the external quantum yield, i.e., the
number of converted CNBD molecules per incident photon
(Fig. 3d), and the photoconversion probability per molecule
(Fig. 3e; See Supplementary Discussion for details).

The data show that the photoconversion reaction in the CNBD
films strongly depends on two experimental parameters, the
film thickness and the fraction of converted CNBD. The
photoconversion is the fastest for thick CNBD films and for
low conversion levels.

In order to unravel the origin of these dependencies, we
consider the conversion in the thick multilayer in more detail.
The reaction probability per molecule (see Fig. 3e) decreases
rapidly with increasing conversion. Close to full conversion, it
finally becomes very low and the uncertainty becomes large

because of the low concentration of residual CNBD. One effect
that contributes to this decrease is the different orientation of
the CNBD molecules with respect to the electric field of the
incident UV light. A quantitative analysis of this orientation effect
(in which we assume random orientation in the multilayer)
shows, however, that this effect only leads to a coverage
dependence, which is much weaker than one observed experi-
mentally (see Supplementary Discussion for details). Therefore,
we suggest that the coverage dependence is mainly caused by
support effects, i.e., by the underlying Co3O4(111) substrate.
Support effects can reduce the conversion probability, for
example by quenching of excited CNBD through energy transport
to the support or by generation of hot electrons and electron–hole
pairs, which trigger the backconversion of CQC to CNBD.
Previously, we have observed a similar substrate effect in
condensed films of non-functionalized NBD32.

Interestingly, the initial photoconversion probability also
decreases with decreasing film thickness (see Fig. 3e). Experi-
mentally, we observe a decrease by a factor of 40 ( ± 50%)
between the 140ML and the 1ML films. This effect may be
caused by the preferential molecular orientation in the mono-
layer, intermolecular interactions which modify the absorption
spectrum, and screening of the electric field of the incident UV
light at the metallic Ir substrate. A quantitative analysis of this
electric-field effect shows that variations of the conversion rate by
up to a factor of 30 are possible throughout a sufficiently thick
film (see Supplementary Discussion for details). Therefore, it is
likely that the electric-field effect largely contributes to the
variation of the initial photoconversion probability, along with
the support effects mentioned above. The importance of the latter
is illustrated by the strong decrease of the photoconversion
probability for the monolayer film, with increasing conversion
(see Fig. 3e). Here, the conversion probability decreases by 2
orders of magnitude between 0% and 60% conversion. As
molecular orientation effects typically play a lesser role in the
anchored monolayer (where the molecules commonly adopt a
similar orientation, in contrast to the randomly oriented multi-
layer), we assume that the decrease in the transition probability
is mainly caused by support effects (i.e., by quenching or
backconversion to CNBD).

Thermally activated backconversion. In the next step, we
investigated the thermally activated backconversion of the
anchored CQC monolayer. The experimental procedure is illu-
strated in Fig. 4a, b. After preparation of the CNBD monolayer,
the film was exposed to a UV pulse (60 s), after which the ther-
mally activated backconversion was recorded by time-resolved
IRAS.

As the monolayer IR bands are extremely weak (ΔR/R ~0.01%),
the photoconversion-decay cycles were repeated for 15 h and the
corresponding IR data were accumulated. Such isothermal
photoconversion-decay measurements were performed at tem-
peratures between 350 and 370 K.

The experimental data are shown in Fig. 4c (right panel) in
form of IR difference spectra (see the Methods section for details).
The decrease of the negative νCQC(CN) band at 2225 cm−1 and
the increase of the positive νCNBD(CN) band at 2204 cm−1 as a
function of time clearly proves that anchored CQC is thermally
back-converted to CNBD. With increasing sample temperature,
we observe that the rate of backconversion becomes faster (Fig. 4c,
right panel). The data allow us to derive the activation energy
for thermally activated backconversion in the anchored CQC
monolayer (see Fig. 4c), yielding a value of 103 ± 10 kJ.mol−1. In
order to investigate whether the anchoring reaction has an effect
on the backconversion, we also measured the kinetics of the
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Photochemical conversion — in-situ IRAS experiment
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Fig. 3 Photochemical conversion of CNBD films on an ordered Co3O4(111) surface: a the experimental procedure used in the photochemical IRAS
experiment; b spectral region of the CN stretching bands of CNBD and CQC during UV irradiation for a thick multilayer film (140ML), a thin multilayer film
(6ML), and an anchored monolayer film (1 ML). All spectra were referenced to the clean sample; c the fraction of residual CNBD as a function of irradiation
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hexagons: 163.84 s, stars: 655.36 s); e photoconversion probability per molecule as a function of conversion and film thickness (green triangles: 1 ML,
orange circles: 6ML, black squares: 140ML s)
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backconversion for CQC in solution (toluene), both in the
protonated form (CQC, carboxylic acid) and in the deprotonated
form (CQC, carboxylate). The activation barriers (CQC proto-
nated: 108 kJ.mol−1, CQC deprotonated: 105 kJ.mol−1, see Sup-
plementary Methods for details) are very close to the value found
for the anchored monolayer. We conclude that, within the
accuracy of our experiments, the anchoring reaction has no effect
on the activation barrier for backconversion.

Stability of the photoswitchable monolayer. Finally, we tested
the stability of the anchored CNBD/CQC monolayer during
repeated energy storage and release cycles. The experimental
procedure is illustrated in Fig. 5a, b. The anchored CNBD
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monolayer was exposed to pulses of UV light (60 s), followed by a
decay period during which the backconversion was monitored by
time-resolved IRAS (30 s per IR spectrum, 18 spectra). The
photoconversion-decay sequence was repeated for a total dura-
tion of 50 h (300 cycles, 6000 IR spectra). The data (averaged in
blocks of 60 cycles to obtain better signal/noise ratio) are shown
in Fig. 5c. Over the total duration of the experiment, we observed
a decay of the band intensities of CQC and CNBD by ~30%.
Assuming that the degradation follows an exponential behavior,
this value corresponds to a loss of 0.15% per storage and release
cycle. Comparing the peak height of the νCNBD(CN) band in
Fig. 5c to the monolayer spectrum (see Fig. 2c), we estimate that
~10% of the NBD monolayer is converted per UV pulse. This
corresponds to a loss of 1.5% per converted NBD molecule, i.e., to
a reversibility of 98.5% per energy storage and release cycle in the
anchored film.

In conclusion, we assembled a solar-energy-storing organic-
oxide hybrid interface by anchoring a tailor-made photoswitch to
an atomically defined oxide surface. The synthesized norborna-
diene derivative 2-cyano-3-(4-carboxyphenyl)norbornadiene
(CNBD) was linked to an atomically defined Co3O4(111) surface
by PVD under UHV conditions. We monitored the photo-
conversion of CNBD to the quadricyclane derivative CQC and
the thermally activated backconversion in situ using a photo-
chemical surface IR spectroscopy experiment. We determined the
quantum efficiencies and showed that photoconversion is possible
even in a single-anchored CNBD monolayer on Co3O4(111). The
anchored CNBD monolayer can be charged and discharged with
high reversibility (98.5% reversibility), and the activation barrier
for the thermally activated backconversion (103 ± 10 kJ.mol−1) is
not affected by the anchoring reaction. The results show that it
is possible to assemble a monolayer of NBD photoswitches on a
semiconducting oxide interface without affecting the functionality
of the photoswitch. The model interface presented in this work
will enable fundamental studies on well-defined hybrid interfaces
for solar-energy storage and conversion. An important next step
toward a functional energy storage device would be to trigger the
energy-release process electrochemically instead of thermally.

Methods
Experimental setup. See Supplementary Methods for details.

Preparation of the Co3O4(111) film. The ordered cobalt oxide thin films were
prepared on an Ir(100) single crystal (MaTeck, purity 99.999%) following an adapted
method based on the procedure described by Heinz and Hammer27. The crystal was
cleaned by cycles of Ar+ ion bombardment (Linde 6.0). Annealing at 1370 K for
3min led to formation of the Ir(100)−(5 × 1) reconstructed surface which was
checked by LEED. Successively, annealing in oxygen (5 × 10−8 mbar, Linde 5.0)

at 1270 K for 3min and cooling to 370 K in O2 yielded an Ir(100)−(2 × 1)O
reconstructed surface as confirmed by LEED. Cobalt (Alfa Aesar, purity 99.95%,
2 mm diameter rod) was deposited for 20min at a sample temperature of 265 K
in O2 atmosphere (1 × 10−6 mbar) at a rate of 2 Å/min (Co metal equivalent) as
determined by the QCM, yielding a Co3O4 film of ~8 nm thickness. An ordered
Co3O4(111) film was formed in two annealing steps, at 520 K in oxygen atmosphere
for 2 min and at 670 K in UHV for 10min, as confirmed by LEED25–27.

PVD of CNBD. CNBD was evaporated from a glass crucible loaded into a home
built Knudsen cell. Prior to the first experiment, the system was separated from the
main chamber by a gate valve, pumped by a separate high vacuum line, and baked
for 24 h. Before deposition, the evaporator was preheated to 370 K before the gate
valve was opened to start the deposition.

During deposition, IR spectra were acquired at a rate of 1 spectrum/min and a
spectral resolution of 4 cm−1. The spectra were referenced to the background of the
clean sample. For the temperature-programmed experiment, IR spectra were
recorded at a rate of 1 spectrum/min while heating the sample at a rate of 2 K/min.
Damping of the signal with increasing temperature was compensated for, following
a procedure described by Xu et al.31, by normalization of the acquired spectra.

Photochemical conversion in UHV. All photochemical experiments in UHV were
performed with a home-built high-intensity UV source in the vicinity of the
sample. In brief, we used a high-power LED (Seoul Viosys, CUN6AF4A, 2.35W),
which yields a photon flux density of 1.68 × 10−18 cm−2.s−1 at a wavelength of 365
nm, corresponding to a power density of 910 mW.cm−2. Further information can
be found in the literature32. During all photoconversion experiments, the sample
was cooled to 110 K. The UV source was operated by an external power supply
(TDK Lambda Z+ 200) triggered by the IR spectrometer (Bruker OPUS 7.2) or
manually. For each sample, nine illumination steps were applied, such that the total
illumination time was increasing exponentially (0.01 s, 0.04 s, 0.16 s, 0.64 s, 2.56 s,
10.24 s, 40.96 s, 163.84 s, 655.36 s). After each illumination step, an IR spectrum
was recorded with an acquisition time of 10 min.

Thermally activated backconversion. Backconversion in the anchored CNBD
film was recorded at three different temperatures, i.e., 350 K, 360 K, 370 K. At each
temperature, the sample was irradiated for 1 min followed by a decay period
(89 min, 29 min, 19 min) during which IR spectra were recorded (2 spectra/min).
The irradiation/decay cycles were repeated for 15 h at each temperature (10, 30, 45
cycles), and the data were accumulated over the cycles to improve the signal/noise
ratio. Background spectra were taken before the measurement at each temperature
step. The rate constants for backconversion were determined from exponential fits
of the maximum peak heights between ν(CN)CNBD and ν(CN)CQC.

Stability test. Stability of the anchored CNBD film was tested by applying 300
cycles of illumination (1 min) and decay (9 min) at 370 K. IR spectra were recorded
at a rate of 2 spectra/min (total acquisition time 50 h, 6000 spectra in total). To
improve the signal/noise ratio, the IR spectra were averaged over blocks of
60 spectra (5 blocks). The data were analyzed for the peak height of the ν(CN)CNBD
band. The loss per cycle was estimated assuming an exponential decay.

Transmission IR data. Transmission IR spectra of CNBD and CQC were recorded in
FTIR-grade KBr (≥ 99%, Sigma Aldrich) using a FTIR spectrometer (Bruker VERTEX
80 v) at a spectral resolution of 2 cm−1 (acquisition time 1min). For the spectrum of
CQC, the CNBD sample was irradiated in an external cell by UV light (Seoul Viosys,
CUN6AF4A, 365 nm, distance to sample 2 cm, illumination time 10min).
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Synthesis. The molecular photoswitch CNBD was synthesized in a multistep
sequence starting from commercially available 4-iodoacetophenone. This included
an initial three-step transformation of the acetyl functionality to the corresponding
propiolonitrile. Direct conjugation of the nitrile to the acetylene activated 1 toward
a Diels–Alder [4+ 2π] cycloaddition reaction with cyclopentadiene to afford
INBD in excellent yield. Knöchel conditions were finally used to promote an
iodine–magnesium exchange and trapping of the carbanion with carbon dioxide
generated CNBD (see Fig. 6).

All intermediates and products were characterized by 1H NMR and 13C NMR.
The final products CNBD and CQC were characterized by UV–vis spectroscopy,
including quantum yields for the photochemical conversion. Thermodynamic and
kinetic data regarding the backconversion from CNBD to CQC were determined by
differential scanning calorimetry (DSC) and kinetic UV–vis studies. The structure of
CNBD was determined by single-crystal X-ray crystal structural analysis. All details
of synthesis and characterization are given in the Supplementary Methods.

DFT calculations. See Supplementary Methods for details.

Data availability
All experimental data are available from the corresponding author upon request.
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