21 research outputs found

    High Energy Neutrino Astronomy: Towards Kilometer-Scale Detectors

    Get PDF
    Of all high-energy particles, only neutrinos can directly convey astronomical information from the edge of the universe---and from deep inside the most cataclysmic high-energy processes. Copiously produced in high-energy collisions, travelling at the velocity of light, and not deflected by magnetic fields, neutrinos meet the basic requirements for astronomy. Their unique advantage arises from a fundamental property: they are affected only by the weakest of nature's forces (but for gravity) and are therefore essentially unabsorbed as they travel cosmological distances between their origin and us. Many of the outstanding mysteries of astrophysics may be hidden from our sight at all wavelengths of the electromagnetic spectrum because of absorption by matter and radiation between us and the source. For example, the hot dense regions that form the central engines of stars and galaxies are opaque to photons. In other cases, such as supernova remnants, gamma ray bursters, and active galaxies, all of which may involve compact objects or black holes at their cores, the precise origin of the high-energy photons emerging from their surface regions is uncertain. Therefore, data obtained through a variety of observational windows---and especially through direct observations with neutrinos---may be of cardinal importance. In this talk, the scientific goals of high energy neutrino astronomy and the technical aspects of water and ice Cherenkov detectors are examined, and future experimental possibilities, including a kilometer-square deep ice neutrino telescope, are explored.Comment: 13 pages, Latex, 6 postscript figures, uses aipproc.sty and epsf.sty. Talk presented at the International Symposium on High Energy Gamma Ray Astronomy, Heidelberg, June 200

    The empirical analysis of non-problematic video gaming and cognitive skills: a systematic review

    Get PDF
    Videogames have become one of the most popular leisure activities worldwide, including multiple game genres with different characteristics and levels of involvement required. Although a small minority of excessive players suffer detrimental consequences including impairment of several cognitive skills (e.g., inhibition, decision-making), it has also been demonstrated that playing videogames can improve different cognitive skills. Therefore, the current paper systematically reviewed the empirical studies experimentally investigating the positive impact of videogames on cognitive skills. Following a number of inclusion and exclusion criteria, a total of 32 papers were identified as empirically investigating three specific skills: taskswitching (eight studies), attentional control (22 studies), and sub-second time perception (two studies). Results demonstrated that compared to control groups, non-problematic use of videogames can lead to improved task-switching, more effective top-down attentional control and processing speed and increased sub-second time perception. Two studies highlighted the impact of gaming on cognitive skills differs depends upon game genre. The studies reviewed suggest that videogame play can have a positive impact on cognitive processes for players

    Neutrinos

    Get PDF
    Report of the Community Summer Study 2013 (Snowmass) Intensity Frontier Neutrino Working GroupReport of the Community Summer Study 2013 (Snowmass) Intensity Frontier Neutrino Working GroupThis document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    A zeolite family with expanding structural complexity and embedded isoreticular structures

    Get PDF
    The authors acknowledge financial support from the Swedish Research Council (VR), the Swedish Governmental Agency for Innovation Systems (VINNOVA), the Röntgen-Ångström Cluster through the project grant MATsynCELL, the Knut and Alice Wallenberg Foundation through the project grant 3DEM-NATUR, the NCRI (2012R1A3A-2048833) and BK 21-plus programmes through the National Research Foundation of Korea, and the UK EPSRC (EP/J02077X/1).The prediction and synthesis of new crystal structures enable the targeted preparation of materials with desired properties. Among porous solids, this has been achieved for metal–organic frameworks1, 2, 3, but not for the more widely applicable zeolites4, 5, where new materials are usually discovered using exploratory synthesis. Although millions of hypothetical zeolite structures have been proposed6, 7, not enough is known about their synthesis mechanism to allow any given structure to be prepared. Here we present an approach that combines structure solution with structure prediction, and inspires the targeted synthesis of new super-complex zeolites. We used electron diffraction to identify a family of related structures and to discover the structural ‘coding’ within them. This allowed us to determine the complex, and previously unknown, structure of zeolite ZSM-25 (ref. 8), which has the largest unit-cell volume of all known zeolites (91,554 cubic ångströms) and demonstrates selective CO2 adsorption. By extending our method, we were able to predict other members of a family of increasingly complex, but structurally related, zeolites and to synthesize two more-complex zeolites in the family, PST-20 and PST-25, with much larger cell volumes (166,988 and 275,178 cubic ångströms, respectively) and similar selective adsorption properties. Members of this family have the same symmetry, but an expanding unit cell, and are related by hitherto unrecognized structural principles; we call these family members embedded isoreticular zeolite structures.PostprintPostprintPeer reviewe
    corecore