87 research outputs found

    First analysis of anisotropic flow with Lee--Yang zeroes

    Full text link
    We report on the first analysis of directed and elliptic flow with the new method of Lee--Yang zeroes. Experimental data are presented for Ru+Ru reactions at 1.69 AGeV measured with the FOPI detector at SIS/GSI. The results obtained with several methods, based on the event-plane reconstruction, on Lee--Yang zeroes, and on multi-particle cumulants (up to 5th order) applied for the first time at SIS energies, are compared. They show conclusive evidence that azimuthal correlations between nucleons and composite particles at this energy are largely dominated by anisotropic flow.Comment: 5 pages, 3 figures, submitted to Phys. Rev. C Rapid Co

    DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads

    Get PDF
    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation—especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants

    Melt Inclusion Vapour Bubbles: The Hidden Reservoir for Major and Volatile Elements

    Get PDF
    Olivine-hosted melt inclusions (MIs) provide samples of magmatic liquids and their dissolved volatiles from deep within the plumbing system. Inevitable post-entrapment modifications can lead to significant compositional changes in the glass and/or any contained bubbles. Re-heating is a common technique to reverse MI crystallisation; however, its effect on volatile contents has been assumed to be minor. We test this assumption using crystallised and glassy basaltic MIs, combined with Raman spectroscopy and 3D imaging, to investigate the changes in fluid and solid phases in the bubbles before and after re-heating. Before re-heating, the bubble contains CO2 gas and anhydrite (CaSO4) crystallites. The rapid diffusion of major and volatile elements from the melt during re-heating creates new phases within the bubble: SO2, gypsum, Fe-sulphides. Vapour bubbles hosted in naturally glassy MIs similarly contain a plethora of solid phases (carbonates, sulphates, and sulphides) that account for up to 84% of the total MI sulphur, 80% of CO2, and 14% of FeO. In both re-heated and naturally glassy MIs, bubbles sequester major and volatile elements that are components of the total magmatic budget and represent a “loss” from the glass. Analyses of the glass alone significantly underestimates the original magma composition and storage parameters

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF
    Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt.%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–84 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An_78–An_92, Mg#_cpx = 82–87, Fo_79.5–Fo_87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An_60–An_68, Mg#_cpx = 71–78, Fo_70–Fo_76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Yb_melt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Yb_melt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal-melt equilibration within the evolved assemblage occurred at ~1140°C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300°C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene-melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene-melt equilibria return mid-crustal pressures of 4±1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO_2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO_2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral-melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.D.A.N. was supported by a Natural Environment Research Council studentship (NE/1528277/1) at the start of this project. SIMS analyses were supported by Natural Environment Research Council Ion Microprobe Facility award (IMF508/1013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00410-015-1170-

    Modeling and Analysis of the Molecular Basis of Pain in Sensory Neurons

    Get PDF
    Intracellular calcium dynamics are critical to cellular functions like pain transmission. Extracellular ATP plays an important role in modulating intracellular calcium levels by interacting with the P2 family of surface receptors. In this study, we developed a mechanistic mathematical model of ATP-induced P2 mediated calcium signaling in archetype sensory neurons. The model architecture, which described 90 species connected by 162 interactions, was formulated by aggregating disparate molecular modules from literature. Unlike previous models, only mass action kinetics were used to describe the rate of molecular interactions. Thus, the majority of the 252 unknown model parameters were either association, dissociation or catalytic rate constants. Model parameters were estimated from nine independent data sets taken from multiple laboratories. The training data consisted of both dynamic and steady-state measurements. However, because of the complexity of the calcium network, we were unable to estimate unique model parameters. Instead, we estimated a family or ensemble of probable parameter sets using a multi-objective thermal ensemble method. Each member of the ensemble met an error criterion and was located along or near the optimal trade-off surface between the individual training data sets. The model quantitatively reproduced experimental measurements from dorsal root ganglion neurons as a function of extracellular ATP forcing. Hypothesized architecture linking phosphoinositide regulation with P2X receptor activity explained the inhibition of P2X-mediated current flow by activated metabotropic P2Y receptors. Sensitivity analysis using individual and the whole system outputs suggested which molecular subsystems were most important following P2 activation. Taken together, modeling and analysis of ATP-induced P2 mediated calcium signaling generated qualitative insight into the critical interactions controlling ATP induced calcium dynamics. Understanding these critical interactions may prove useful for the design of the next generation of molecular pain management strategies

    The Ccr4-Not Complex Interacts with the mRNA Export Machinery

    Get PDF
    The Ccr4-Not complex is a key eukaryotic regulator of gene transcription and cytoplasmic mRNA degradation. Whether this complex also affects aspects of post-transcriptional gene regulation, such as mRNA export, remains largely unexplored. Human Caf1 (hCaf1), a Ccr4-Not complex member, interacts with and regulates the arginine methyltransferase PRMT1, whose targets include RNA binding proteins involved in mRNA export. However, the functional significance of this regulation is poorly understood.Here we demonstrate using co-immunoprecipitation approaches that Ccr4-Not subunits interact with Hmt1, the budding yeast ortholog of PRMT1. Furthermore, using genetic and biochemical approaches, we demonstrate that Ccr4-Not physically and functionally interacts with the heterogenous nuclear ribonucleoproteins (hnRNPs) Nab2 and Hrp1, and that the physical association depends on Hmt1 methyltransferase activity. Using mass spectrometry, co-immunoprecipitation and genetic approaches, we also uncover physical and functional interactions between Ccr4-Not subunits and components of the nuclear pore complex (NPC) and we provide evidence that these interactions impact mRNA export.Taken together, our findings suggest that Ccr4-Not has previously unrealized functional connections to the mRNA processing/export pathway that are likely important for its role in gene expression. These results shed further insight into the biological functions of Ccr4-Not and suggest that this complex is involved in all aspects of mRNA biogenesis, from the regulation of transcription to mRNA export and turnover

    Nociceptors: a phylogenetic view

    Get PDF
    The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt “detect and protect” system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels

    ICF, An Immunodeficiency Syndrome: DNA Methyltransferase 3B Involvement, Chromosome Anomalies, and Gene Dysregulation

    Get PDF
    The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-κB, and TNFa signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2at1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore