19 research outputs found

    Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.

    Get PDF
    Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage

    Language endangerment and language documentation in Africa

    Get PDF
    Non peer reviewe

    Early life exposure to ethinylestradiol enhances subsequent responses to environmental estrogens measured in a novel transgenic zebrafish

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.Estrogen plays fundamental roles in a range of developmental processes and exposure to estrogen mimicking chemicals has been associated with various adverse health effects in both wildlife and human populations. Estrogenic chemicals are found commonly as mixtures in the environment and can have additive effects, however risk analysis is typically conducted for single-chemicals with little, or no, consideration given for an animal's exposure history. Here we developed a transgenic zebrafish with a photoconvertable fluorophore (Kaede, green to red on UV light exposure) in a skin pigment-free mutant element (ERE)-Kaede-Casper model and applied it to quantify tissue-specific fluorescence biosensor responses for combinations of estrogen exposures during early life using fluorescence microscopy and image analysis. We identify windows of tissue-specific sensitivity to ethinylestradiol (EE2) for exposure during early-life (0-5 dpf) and illustrate that exposure to estrogen (EE2) during 0-48 hpf enhances responsiveness (sensitivity) to different environmental estrogens (EE2, genistein and bisphenol A) for subsequent exposures during development. Our findings illustrate the importance of an organism's stage of development and estrogen exposure history for assessments on, and possible health risks associated with, estrogen exposure.This work was co-funded by a BBSRC CASE studentship with AstraZeneca (reference 620033640) supporting J.M.G, a BBSRC small grant (reference BB/L01548X/1) to C.R.T., and by the AstraZeneca Global Safety, Health and Environment research programme. S.F.O. is an employee of AstraZeneca, a biopharmaceutical company specialized in the discovery, development, manufacturing and marketing of prescription medicines. AstraZeneca provided support in the form of studentship and salary for author S.F.O. but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Special thanks to Dr. Nicola Rogers for editing this manuscript
    corecore