1,772 research outputs found
Cryotomography of budding influenza a virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end
Influenza viruses exhibit striking variations in particle morphology between strains. Clinical isolates of influenza A virus have been shown to produce long filamentous particles while laboratory-adapted strains are predominantly spherical. However, the role of the filamentous phenotype in the influenza virus infectious cycle remains undetermined. We used cryo-electron tomography to conduct the first three-dimensional study of filamentous virus ultrastructure in particles budding from infected cells. Filaments were often longer than 10 microns and sometimes had bulbous heads at their leading ends, some of which contained tubules we attribute to M1 while none had recognisable ribonucleoprotein (RNP) and hence genome segments. Long filaments that did not have bulbs were infrequently seen to bear an ordered complement of RNPs at their distal ends. Imaging of purified virus also revealed diverse filament morphologies; short rods (bacilliform virions) and longer filaments. Bacilliform virions contained an ordered complement of RNPs while longer filamentous particles were narrower and mostly appeared to lack this feature, but often contained fibrillar material along their entire length. The important ultrastructural differences between these diverse classes of particles raise the possibility of distinct morphogenetic pathways and functions during the infectious process
Classical Conformal Blocks and Accessory Parameters from Isomonodromic Deformations
Classical conformal blocks naturally appear in the large central charge limit
of 2D Virasoro conformal blocks. In the correspondence, they
are related to classical bulk actions and are used to calculate entanglement
entropy and geodesic lengths. In this work, we discuss the identification of
classical conformal blocks and the Painlev\'e VI action showing how
isomonodromic deformations naturally appear in this context. We recover the
accessory parameter expansion of Heun's equation from the isomonodromic
-function. We also discuss how the expansion of the
-function leads to a novel approach to calculate the 4-point classical
conformal block.Comment: 32+10 pages, 2 figures; v3: upgraded notation, discussion on moduli
space and monodromies, numerical and analytic checks; v2: added refs, fixed
emai
Pathophysiology of acute experimental pancreatitis: Lessons from genetically engineered animal models and new molecular approaches
The incidence of acute pancreatitis is growing and worldwide population-based studies report a doubling or tripling since the 1970s. 25% of acute pancreatitis are severe and associated with histological changes of necrotizing pancreatitis. There is still no specific medical treatment for acute pancreatitis. The average mortality resides around 10%. In order to develop new specific medical treatment strategies for acute pancreatitis, a better understanding of the pathophysiology during the onset of acute pancreatitis is necessary. Since it is difficult to study the early acinar events in human pancreatitis, several animal models of acute pancreatitis have been developed. By this, it is hoped that clues into human pathophysiology become possible. In the last decade, while employing molecular biology techniques, a major progress has been made. The genome of the mouse was recently sequenced. Various strategies are possible to prove a causal effect of a single gene or protein, using either gain-of-function (i.e., overexpression of the protein of interest) or loss-of-function studies (i.e., genetic deletion of the gene of interest). The availability of transgenic mouse models and gene deletion studies has clearly increased our knowledge about the pathophysiology of acute pancreatitis and enables us to study and confirm in vitro findings in animal models. In addition, transgenic models with specific genetic deletion or overexpression of genes help in understanding the role of one specific protein in a cascade of inflammatory processes such as pancreatitis where different proteins interact and co-react. This review summarizes the recent progress in this field. Copyright (c) 2005 S. Karger AG, Basel
Epistemic Dependence and Collective Scientific Knowledge
I argue that scientific knowledge is collective knowledge, in a sense to be specified and defended. I first consider some existing proposals for construing collective knowledge and argue that they are unsatisfactory, at least for scientific knowledge as we encounter it in actual scientific practice. Then I introduce an alternative conception of collective knowledge, on which knowledge is collective if there is a strong form of mutual epistemic dependence among scientists, which makes it so that satisfaction of the justification condition on knowledge ineliminably requires a collective. Next, I show how features of contemporary science support the conclusion that scientific knowledge is collective knowledge in this sense. Finally, I consider implications of my proposal and defend it against objections. © 2013 Springer Science+Business Media Dordrecht
Microbial catabolic activities are naturally selected by metabolic energy harvest rate
The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate
Captive reptile mortality rates in the home and implications for the wildlife trade
The trade in wildlife and keeping of exotic pets is subject to varying levels of national and international regulation and is a topic often attracting controversy. Reptiles are popular exotic pets and comprise a substantial component of the live animal trade. High mortality of traded animals raises welfare concerns, and also has implications for conservation if collection from the wild is required to meet demand. Mortality of reptiles can occur at any stage of the trade chain from collector to consumer. However, there is limited information on mortality rates of reptiles across trade chains, particularly amongst final consumers in the home. We investigated mortality rates of reptiles amongst consumers using a specialised technique for asking sensitive questions, additive Randomised Response Technique (aRRT), as well as direct questioning (DQ). Overall, 3.6% of snakes, chelonians and lizards died within one year of acquisition. Boas and pythons had the lowest reported mortality rates of 1.9% and chameleons had the highest at 28.2%. More than 97% of snakes, 87% of lizards and 69% of chelonians acquired by respondents over five years were reported to be captive bred and results suggest that mortality rates may be lowest for captive bred individuals. Estimates of mortality from aRRT and DQ did not differ significantly which is in line with our findings that respondents did not find questions about reptile mortality to be sensitive. This research suggests that captive reptile mortality in the home is rather low, and identifies those taxa where further effort could be made to reduce mortality rate
Routes for breaching and protecting genetic privacy
We are entering the era of ubiquitous genetic information for research,
clinical care, and personal curiosity. Sharing these datasets is vital for
rapid progress in understanding the genetic basis of human diseases. However,
one growing concern is the ability to protect the genetic privacy of the data
originators. Here, we technically map threats to genetic privacy and discuss
potential mitigation strategies for privacy-preserving dissemination of genetic
data.Comment: Draft for comment
Serotonin regulates prostate growth through androgen receptor modulation
Serotonin regulates prostate growth through androgen receptor modulationAging and testosterone almost inexorably cause benign prostatic hyperplasia (BPH) in Human males. However, etiology of BPH is largely unknown. Serotonin (5-HT) is produced by neuroendocrine prostatic cells and presents in high concentration in normal prostatic transition zone, but its function in prostate physiology is unknown. Previous evidence demonstrated that neuroendocrine cells and 5-HT are decreased in BPH compared to normal prostate. Here, we show that 5-HT is a strong negative regulator of prostate growth. In vitro, 5-HT inhibits rat prostate branching through down-regulation of androgen receptor (AR). This 5-HT's inhibitory mechanism is also present in human cells of normal prostate and BPH, namely in cell lines expressing AR when treated with testosterone. In both models, 5-HT's inhibitory mechanism was replicated by specific agonists of 5-Htr1a and 5-Htr1b. Since peripheral 5-HT production is specifically regulated by tryptophan hydroxylase 1(Tph1), we showed that Tph1 knockout mice present higher prostate mass and up-regulation of AR when compared to wild-type, whereas 5-HT treatment restored the prostate weight and AR levels. As 5-HT is decreased in BPH, we present here evidence that links 5-HT depletion to BPH etiology through modulation of AR. Serotoninergic prostate pathway should be explored as a new therapeutic target for BPH.Projects NORTE-01-0246-FEDER-000012, NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023, supported by the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) and Bolsa de Investigação GSK Inovação em Urologia 2012info:eu-repo/semantics/publishedVersio
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Predicting change in quality of life from age 79 to 90 in the Lothian Birth Cohort 1921
Purpose: Quality of life (QoL) decreases in very old age, and is strongly related to health outcomes and mortality. Understanding the predictors of QoL and change in QoL amongst the oldest old may suggest potential targets for intervention. This study investigated change in QoL from age 79 to 90 years in a group of older adults in Scotland, and identified potential predictors of that change.
Method: Participants were members of the Lothian Birth Cohort 1921 who attended clinic visits at age 79 (n = 554) and 90 (n = 129). Measures at both time points included QoL (WHOQOL-BREF: four domains and two single items), anxiety and depression, objective health, functional ability, self-rated health, loneliness, and personality.
Results: Mean QoL declined from age 79 to 90. Participants returning at 90 had scored significantly higher at 79 on most QoL measures, and exhibited better objective health and functional ability, and lower anxiety and depression than non-returners. Hierarchical multiple regression models accounted for 20.3–56.3% of the variance in QoL at age 90. Baseline QoL was the strongest predictor of domain scores (20.3–35.6% variance explained), suggesting that individual differences in QoL judgements remain largely stable. Additional predictors varied by the QoL domain and included self-rated health, loneliness, and functional and mood decline between age 79 and 90 years.
Conclusions: This study has identified potential targets for interventions to improve QoL in the oldest old. Further research should address causal pathways between QoL and functional and mood decline, perceived health and loneliness
- …
