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how isomonodromic deformations naturally appear in this context. We recover the accessory

parameter expansion of Heun’s equation from the isomonodromic τ -function. We also discuss

how the c = 1 expansion of the τ -function leads to a novel approach to calculate the 4-point

classical conformal block.
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1 Introduction

Classical conformal blocks [1–3] are essential pieces of the holographic duality between AdS3

gravity and 2D conformal field theory (CFT) [4–6]. Holographic CFTs are assumed to have

a sparse light spectrum and to contain only correlators dominated by the identity channel

in the semiclassical limit [5, 7], usually called classical vacuum blocks. These blocks can
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be used to study thermal aspects of 3D gravity [6, 8], holographic entanglement entropy

[5, 9], to calculate bulk geodesic lengths [10–14] and Lyapunov exponents of out-of-time-

order correlators [15].

Classical conformal blocks are defined by the conformal block exponentiation conjecture

in the large central charge limit1 [1, 6, 16]

〈V∆0(0)V∆x(x)Π∆V∆1(1)V∆∞(∞)〉c→∞ ∼ exp
( c

6
fδ(δ0, δx, δ1, δ∞;x)

)
. (1.1)

We denote the central charge by c and ∆i = c
6
δi, i = 0, x, 1,∞, are the conformal dimen-

sions of the chiral primary operators V∆i
, with δi being the classical dimensions. Π∆ is the

projection operator to the intermediate channel with weight ∆ = c
6
δ. In broad terms, we

say that an operator O is light if its weight ∆O � c and it is called heavy if ∆O ∼ c as

c→∞. The function fδ({δi};x) is called the classical conformal block [2, 3]. No closed CFT

expression is known for this special function. It can be written as a series expansion in x

using a direct CFT approach [18] or Zamolodchikov’s recurrence formula [1, 19]. The CFT

approach quickly gets too cumbersome to find the explicit coefficients at higher orders in x.

A formal resummation of the recurrence formula was presented in [20], but the full classical

conformal block is still out of reach.

A more promising direction is to obtain classical conformal blocks via the AGT corre-

spondence [21]. The Nekrasov partition function ZNek encodes information about the moduli

space of vacua and its non-perturbative corrections in supersymmetric gauge theories [22].

According to the AGT correspondence, for a certain class of N = 2 SUSY theories, ZNek is

identified with a 2D Liouville conformal block. One can show that the so-called Nekrasov-

Shatashvili limit [23] is equivalent to the large central charge limit of Liouville theory. This

fact was used in [24, 25] to obtain an expression for the classical conformal block in terms

of the N = 2 twisted superpotential, calculated at the saddle-point of the partition function.

The saddle-point condition then has to be solved order-by-order in x. The twisted super-

potential can be understood in terms of the symplectic geometry of the moduli space of

SL(2,C) flat-connections and the Bethe/gauge correspondence [26], which gives extra hints

on the deeper mathematical structure of classical conformal blocks. For a review on exact

results in N = 2 field theories, see [27].

In a parallel development, Litvinov et al [3] discussed how the 4-point classical conformal

block is related to the classical action of the Painlevé VI (PVI) equation [28]. In this ap-

proach, the derivative of the PVI action, evaluated on a PVI solution with certain boundary

conditions, gives the accessory parameter of a Fuchsian differential equation with 4 regular

singular points, also known as Heun’s equation [29]. The Heun equation is obtained by the

1There is no rigorous CFT proof of this conjecture, only plausibility and numerical arguments [1]. It is

also compatible with classical saddle-point arguments in Liouville theory [16, 17].
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classical limit of the 5-point conformal block with a level-2 light degenerate insertion

〈ϕL(z)V∆0(0)V∆x(x)Π∆V∆1(1)V∆∞(∞)〉c→∞ ∼ ψ(z, x) exp
( c

6
fδ({δi};x)

)
. (1.2)

The level-2 null vector equation for ϕL(z), also known as level-2 BPZ equation [18], reduces

to the normal form of Heun’s equation[
∂2
z −

t(t− 1)Hx

z(z − 1)(z − x)
+
δ0

z2
+

δ1

(z − 1)2
+

δx
(z − x)2

+
δ∞ − δ0 − δ1 − δx

z(z − 1)

]
ψ(z, x) = 0, (1.3)

where the accessory parameter is given by

Hx = −∂xfδ({δi};x). (1.4)

On the other hand, the semiclassical limit of the 5-point conformal block with a level-2 heavy

degenerate insertion

〈ϕH(λ)V∆0(0)V∆x(x)Π∆V∆1(1)V∆∞(∞)〉c→∞ ∼ exp
( c

6
Sδ({δi};λ, x)

)
(1.5)

obeys a BPZ equation equivalent to the Hamilton–Jacobi equation of the PVI action. This

means that the BPZ equation implies that λ must be a solution of the PVI equation.

In order to recover the 4-point classical conformal block from the PVI action, the authors

of [3] set λ = ∞ in (1.5) and obtain an integral formula for the classical block. Taking the

derivative of this formula then leads to the accessory parameter of Heun’s equation (1.4) in

terms of the initial condition for λ, fixed by λ = ∞. With a clever usage of a double series

expansion of the PVI solution [28], the authors of [3] managed to solve the condition λ =∞
order by order in x and then substituted the result into the accessory parameter formula.

However, their procedure relies on substituting the double series expansion into the PVI

equation, which is a complicated second order non-linear differential equation, to obtain the

doubles series expansion terms also order by order in x.

In this paper, we show how the isomonodromic τ -function [30–32], also known as PVI

τ -function [33, 34], can be used to find the accessory parameter expansion discussed in [3] in

a more straightforward way. Both PVI solutions and the accessory parameter can be written

in terms of the τ -function. Since the works of Sato, Jimbo and Miwa [35–39], it is known

that the PVI τ -function is related to a c = 1 correlator of monodromy fields. In fact, the

isomonodromic approach effectively solves the Riemann-Hilbert problem of SL(2,C) Fuchsian

systems [30–32]. For a long time, only the asymptotics of the τ -function was known, limiting

its scope of applications. Its full expansion was constructed only recently in [34] and proved

in [40]. This expansion is given by a linear combination of c = 1 conformal blocks, which are

written in closed form via AGT correspondence. There are two integration constants (σ, s)
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for the τ -function, labeling irreducible representations of the 4-point monodromy group,

which we review in section 3.3. The relevant expansion in terms of c = 1 conformal blocks

[34] is presented in 4.1. This τ -function expansion is what allows us to solve the initial

condition for the isomonodromic flow and then find the accessory parameter expansion.

The way we solve the accessory parameter expansion clarifies two important things.

First, the initial condition used by [3] can be uniquely defined in terms of isomonodromic

deformations. Second, the recent result [34] on the c = 1 expansion of the PVI τ -function

allow us to present the accessory parameter expansion in a more systematic way, providing

a practical algorithm on how to fully solve this problem.

Let us now give the outline of this paper. In section 2, we review the relationship

between the semiclassical limit of BPZ equations and Fuchsian equations. We introduce a

slightly more general derivation than [3], using a 6-point conformal block with 2 degenerate

insertions instead of a 5-point conformal block. This introduces the relationship between the

classical conformal block (1.5) and the Painlevé VI action.

In Section 3, we review the standard setup of isomonodromic deformations, the τ -

function definition and the associated ordinary differential equation (ODE) with one extra

apparent singularity. We then review the connection between the semiclassical limit of CFT

correlators and isomonodromic deformations [41, 42]. We move on to discuss the relationship

between Fuchsian equations and the monodromy group of the 4-punctured sphere, summa-

rizing how the different parameters in this paper relate with each other. Finally, we show

how the BPZ equations of section 2 can be encoded in a Fuchsian system when c = 1. The

conclusion is that the monodromy data of a c =∞ conformal block can be encoded in a c = 1

Fuchsian system. This makes the connection between classical conformal blocks, Painlevé

VI and isomonodromic deformations explicit.

In section 4, we present our algorithm to calculate the accessory parameter (1.4) using the

isomonodromic τ -function [33, 34]. The algorithm consists of three steps, described in detail

in this section. The crucial step is to solve a special initial condition to the isomonodromic

flow. We can only solve this condition order-by-order in x, in a similar fashion to [3] or the

AGT approach of [25]. This constrains the general moduli space of the monodromy group

to a subspace with only one parameter, the composite monodromy σ. Our approach gives

new analytic insights on classical conformal blocks compared to [3].

In Section 5, we show how the PVI action can be written only in terms of τ -functions.

In principle, this gives a formula for the 4-point classical conformal block, up to the solution

of the appropriate PVI initial condition. However, as we discuss in the linear dilaton case,

the PVI τ -function simplifies in certain special cases [34, 43]. We leave the study of the

different special cases for future work.

The relationship between isomonodromic deformations and the CFT semiclassical limit

has been previously explored in [41, 42]. Although these papers recognize the importance
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of isomonodromic deformations, the relevance of the τ -function and its detailed implemen-

tation has only been discussed here. Therefore, our main contribution is to give a unified

prescription on how to use the isomonodromic τ -function to obtain the accessory parameter

of Heun’s equation and the associated classical conformal block in 2D CFT.

2 Classical Conformal Blocks and Accessory Parameters

In this section, we review how the semiclassical limit of a special 6-point conformal block

leads to a Fuchsian equation with 4 singular points and one apparent singularity. The

method generalizes to arbitrary n-point conformal blocks with an appropriate number of

extra degenerate insertions [41, 42].

Our derivation relies only on the 2D conformal symmetry and the definition of conformal

blocks. Although we use the standard Liouville notation for the conformal dimensions and

central charge, we do not make any particular assumption about the spectrum. This comes

a posteriori and it is the main point of the bootstrap program [2, 6, 7, 44–47]. For reviews

on Liouville theory and CFT, we suggest [48, 49].

A chiral primary operator V∆(P ) has conformal dimension

∆(P ) =
Q2

4
+ P 2, (2.1)

where P is the momentum of the operator and Q parametrizes the central charge as

c = 1 + 6Q2, Q = b+
1

b
, (2.2)

with b ∈ C. The spectrum is dual under b → 1/b, and we choose b → 0 to denote the

semiclassical limit.

Let us consider the chiral 6-point correlator with two degenerate insertions

〈ϕ∆L
(z)ϕ∆H

(λ)V∆1(z1)V∆2(z2)V∆3(z3)V∆4(z4)〉 =
∑
P

CP FP (∆L,∆H ,∆|z, λ, z), (2.3)

where ϕ∆L
and ϕ∆H

stands for light and heavy level-2 degenerate operators, respectively.

∆ = (∆1, . . . ,∆4) stands for the conformal dimensions of generic heavy fields at positions

z = (z1, · · · , z4). The conformal dimensions can be written as

∆L = −1

2
− 3b2

4
, ∆H = −1

2
− 3

4b2
, ∆i ≡ ∆(Pi) =

Q2

4
+ P 2

i , (i = 1, . . . , 4). (2.4)

CP represents the appropriate products of structure constants. With the ordering given in

figure 1, the conformal block FP (∆L,∆H ,∆|z, λ, z) is labeled by the intermediate momenta

P = (P, P + is1
2b
, P + is1

2b
+ is2b

2
), s1, s2 = ±1.
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Figure 1. 6-point conformal block with one heavy and one light insertion. The intermediate

momenta are labeled by P and two integers s1, s2 = ±1.

The correlator (2.3) obeys a light BPZ equation in the variable z and a heavy BPZ

equation in the variable λ. Because of linearity, the conformal blocks obey the same equations

[
1

b2
∂2
z +

∆H

(z − λ)2
+

∂λ
z − λ

+
4∑
i=1

(
∆i

(z − zi)2
+

∂zi
z − zi

)]
FP (z, λ, z) = 0, (2.5a)

[
b2∂2

λ +
∆L

(λ− z)2
+

∂z
λ− z

+
4∑
i=1

(
∆i

(λ− zi)2
+

∂zi
λ− zi

)]
FP (z, λ, z) = 0, (2.5b)

where we omitted the conformal dimensions in FP (z, λ, z) for convenience. We can simplify

these equations using global conformal transformations and the Ward identity

〈T (w)ϕL(z)ϕH(λ)V∆1(z1) · · ·V∆4(z4)〉 =

=
∑

i=L,H,1,...,4

(
∆i

(w − zi)2
+

∂zi
w − zi

)
〈ϕL(z)ϕH(λ)V∆1(z1) · · ·V∆4(z4)〉, (2.6)

where T (w) is the 2D stress tensor, with zL = z and zH = λ. A straightforward consequence

of the asymptotic behavior T (w) ∼ w−4 as w →∞ is that∮
w=∞

dw ε(w)〈T (w)ϕL(z)ϕH(λ)V1(z1) · · ·V4(z4)〉 = 0 (2.7)

with ε(w) =
∏3

i=1(w − zi)/(w − z) [48]. Using (2.6) and (2.7) in (2.5a), we choose z1 =

0, z2 = t, z3 = 1, z4 =∞ and relabeling the ∆’s accordingly, we get[
b−2∂2

z −
(

1

z
+

1

z − 1

)
∂z +

∆0

z2
+

∆1

(z − 1)2
+

∆t

(z − t)2
+

∆H

(z − λ)2
+

t(t− 1)∂t
z(z − 1)(z − t)

+

+
λ(λ− 1)∂λ

z(z − 1)(z − λ)
+

∆∞ −∆L −∆H −∆0 −∆1 −∆t

z(z − 1)

]
FP (z, λ, t) = 0. (2.8)
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Let us now analyze the semiclassical limit. Assuming Pk = iθk/b and P = iσ/b as b→ 0,

we have

∆L → −
1

2
, ∆H → −

3

4b2
, ∆(P )→ δσ

b2
, ∆k →

δk
b2
, (k = 0, x, 1,∞), (2.9)

where

δσ =
1

4
− σ2, δk =

1

4
− θ2

k, (k = 0, x, 1,∞). (2.10)

Assuming heavy-light factorization and exponentiation2 [2, 3, 16], we write the semiclassical

limit of the 6-point conformal block when b→ 0 as

F±σ (z, λ, t) ∼ ψ(z, λ, t) exp

(
1

b2
S±σ (λ, t)

)
. (2.11)

We simplified the notation to P → (σ,±) because the light field ϕL(z) does not contribute

to the intermediate momenta in the semiclassical limit. The function ψ(z, λ, t) encodes the

fusion (monodromy) information of the light field, as we are going to see below. Fusing the

light degenerate field with any of the other fields, we end up with the semiclassical limit of

the 5-point block with all insertions being heavy

F±σ (λ, t) ∼ exp

(
1

b2
S±σ (λ, t)

)
. (2.12)

Substituting (2.11) in (2.8) gives[
∂2
z +

t(t− 1)Ct
z(z − 1)(z − t)

+
λ(λ− 1)Cλ

z(z − 1)(z − λ)
+

+
δ0

z2
+

δ1

(z − 1)2
+

δt
(z − t)2

−
3
4

(z − λ)2
+
δ∞ − δ0 − δ1 − δt + 3

4

z(z − 1)

]
ψ(z, λ, t) = 0, (2.13)

which is a Fuchsian equation with 5 singular points and accessory parameters

Ct = ∂tS
±
σ , Cλ = ∂λS

±
σ . (2.14)

Following the same procedure for (2.5b), we get[
b2∂2

λ −
(

1

λ
+

1

λ− 1

)
∂λ +

∆0

λ2
+

∆1

(λ− 1)2
+

∆t

(λ− t)2
+

∆L

(λ− z)2
+

t(t− 1)∂t
λ(λ− 1)(λ− t)

+

+
z(z − 1)∂z

λ(λ− 1)(λ− z)
+

∆∞ −∆L −∆H −∆0 −∆1 −∆t

λ(λ− 1)

]
FP (z, λ, t) = 0. (2.15)

2The exponentiation can be understood in Liouville field theory. In principle, the semiclassical limit of a

correlator is given by a classical saddle-point of the Liouville action, if this saddle-point is unique.
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The semiclassical limit of this equation gives a constraint on the accessory parameters (2.14)

(∂λS
±
σ )2 −

(
1

λ
+

1

λ− 1

)
∂λS

±
σ +

t(t− 1)∂tS
±
σ

λ(λ− 1)(λ− t)
+

+
δ0

λ2
+

δ1

(λ− 1)2
+

δt
(λ− t)2

+
δ∞ − δ0 − δ1 − δt + 3

4

λ(λ− 1)
= 0. (2.16)

This is exactly the condition for z = λ to be an apparent singularity of (2.13) [41, 42, 50].

This means that ψ(z, λ, t) has integer monodromy around z = λ but no logarithmic behavior.

Thus z = λ is not a singular point of the solution. Moreover, (2.16) can be interpreted as a

Hamilton–Jacobi equation for S±σ (λ, t)

∂S±σ
∂t

+H

(
λ,
∂S±σ
∂λ

, t

)
= 0, (2.17)

where

H(λ, p, t) =
λ(λ− 1)(λ− t)

t(t− 1)

[
p2 −

(
1

λ
+

1

λ− 1

)
p+

+
δ0

λ2
+

δ1

(λ− 1)2
+

δt
(λ− t)2

+
δ∞ − δ0 − δ1 − δt + 3

4

λ(λ− 1)

]
. (2.18)

The equation of motion for λ(t) obtained from this Hamiltonian is the PVI equation, therefore

S±σ (λ, t) is the PVI action. The heavy BPZ equation gives a saddle-point condition for

S±σ (λ, t) [3].

If we define the Hamiltonian system (λ(t), p(t)) evolving under the PVI Hamiltonian

(2.18), it is possible to show that the monodromy data of the Fuchsian equation (2.13) does

not change as we change t in the complex plane. Therefore, (2.13) is the isomonodromic

deformation of a 4-point Fuchsian equation, a deformed Heun’s equation, with z = λ being

an apparent singularity and not contributing to the monodromy data [41, 42, 50]. This

means that isomonodromic deformations naturally emerge in CFT. We will review the stan-

dard setup of isomonodromic deformations in the next section. We also discuss how isomon-

odromic deformations relate the monodromy group of the 4-punctured sphere and the moduli

space of Fuchsian equations (also called opers in the literature [51]).

3 Isomonodromic Deformations and the Semiclassical Limit

In the previous section, we saw that the conformal block exponentiation (2.11) effectively

transforms the light BPZ equation into a linear ODE for ψ(z, λ, t). The classical conformal
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block S±σ (λ, t) turns out to be the PVI action. In this section, we review the isomonodromic

setup from a Fuchsian system and how to obtain the semiclassical equations (2.13) and

(2.17) in this approach. We will then see that (2.17) is equivalent to the definition of

the isomonodromic τ -function when (λ, p) are PVI solutions. We also make a digression

about the monodromy group and the moduli space of flat connections, summarizing how the

different objects introduced in this paper can be labeled by the two PVI integration constants

(σ, s). Finally, we finish this section arguing that the monodromy data of solutions of both

heavy and light BPZ equations can be encoded in a Fuchsian system. We show that this

can be consistently done only if c = 1. This has a two-fold purpose: first, to argue that

the isomonodromic τ -function can be understood as a c = 1 correlator and, second, to show

that the monodromy data of c =∞ conformal blocks and c = 1 correlators can be encoded

in the same Fuchsian system.

3.1 Isomonodromic Deformations and the Garnier System

In this section, we recover the standard c = 1 setup for isomonodromic deformations of

Fuchsian systems [30–32, 34]. Let us start with the following Fuchsian system for the vector

Ψ(a|z, λ) = (ψ1(a|z, λ), ψ2(a|z, λ))T

∂zΨ = A(z)Ψ, (3.1a)

∂λΨ = −A(λ)Ψ, (3.1b)

∂aiΨ = −
(
λ− z
λ− ai

)
Ai

z − ai
Ψ, (3.1c)

where the Ai are gl(2,C) matrices with

TrAi = 2θi, TrA2
i = 0. (3.2)

We call this choice of TrAi the canonical gauge. The Fuchsian system above has n singular

points a = (a1, . . . , an) and corresponding monodromy coefficients θ = (θ1, . . . , θn) (see

section 3.3 for details on the monodromy group). The integrability conditions of (3.1) are

the Schlesinger equations [34, 52]

∂aiAj =
λ− aj
λ− ai

[Ai, Aj]

ai − aj
, i 6= j, (3.3a)

∂ajAj = −
∑
i 6=j

[Ai, Aj]

ai − aj
, ∂λAj = −

∑
i 6=j

[Ai, Aj]

λ− ai
. (3.3b)

These equations represent isomonodromic deformations of the Fuchsian system (3.1), as

they generate a flow changing the positions of the singular points a without changing the
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monodromies. In fact, taking the trace of equations (3.3), it is clear that TrAi do not change

under the flow. The isomonodromic τ -function τS = τS(θ;a) is defined by

d log τS =
n∑
i<j

Tr(AiAj)d log(ai − aj), (3.4)

which is a closed 1-form provided that the Schlesinger equations are satisfied. This is the

generating function of the isomonodromic Hamiltonians

HS,i = ∂ai log τS =
∑
j 6=i

Tr(AiAj)

ai − aj
, i = 1, . . . , n. (3.5)

One can show from the Schlesinger equations (3.3) that these Hamiltonians generate the

isomonodromic flow for λ = λ(a) [30, 50].

Let us focus now on the n = 4 case. Applying a Möbius transformation, we fix the singu-

lar points to a = (a0, at, a1, a∞) = (0, t, 1,∞) and monodromy parameters θ = (θ0, θt, θ1, θ∞).

Then we have the Fuchsian system

∂zΨ = A(z)Ψ, (3.6a)

∂λΨ = −A(λ)Ψ, (3.6b)

∂tΨ = −
(
λ− z
λ− t

)
At
z − t

Ψ, (3.6c)

with

A(z) =
∑
i=0,1,t

Ai
z − ai

, A∞ = −
∑
i=0,1,t

Ai =

(
κ1 0

0 κ2

)
, (3.7)

where 2θ∞ = κ1−κ2− 1 and κ1 +κ2 = −2(θ0 + θ1 + θt). These last conditions can be solved

to

κ1 = θ∞ +
1

2
−
∑
i=0,1,t

θi, κ2 = −θ∞ −
1

2
−
∑
i=0,1,t

θi. (3.8)

Notice that we used the SL(2,C) gauge freedom to fix A∞ to be in diagonal form. The solu-

tion Ψ has monodromies on the complex z-plane given by the eigenvalues of Ai ∼ diag(2θi, 0)

(see section 3.3). A convenient parameterization for the Ai was given by [31]

Ai =

(
pi + 2θi piqi

− (pi+2θi)
qi

−pi

)
, i = 0, 1, t, (3.9)

where pi and qi are functions of (λ, t) and the fixed monodromy parameters θ. The diagonal

form of A∞ in (3.7) implies the constraints∑
i=0,1,t

pi = κ2,
∑
i=0,1,t

piqi = 0,
∑
i=0,1,t

(pi + 2θi)

qi
= 0. (3.10)
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The second equation above implies that A12(z) must have a simple zero in z and, for consis-

tency with (3.6), it has to be at z = λ

A12(z) = k
λ− z

z(z − 1)(z − t)
, k ∈ C. (3.11)

We can then solve for the qi’s in (3.10) via

piqi = Res
z=ai

[
k

λ− z
z(z − 1)(z − t)

]
= k

λ− ai
f ′(ai)

, f(z) ≡ z(z − 1)(z − t). (3.12)

We have only two equations left in (3.10) for the three pi’s, so we introduce the variable

µ =
∑
i=0,1,t

pi + 2θi
λ− ai

(3.13)

and solve the constraints for them in terms of (λ, µ, t). The expressions for the pi’s are not

particularly enlightening to display here and can be found in [31].

Let us consider the second order ODE for the first component of Ψ = (ψ1 , ψ2)T

∂2
zψ1 − (TrA(z) + ∂z logA12(z))∂zψ1 +

(
detA(z) + A11(z)∂z log

A12(z)

A11(z)

)
ψ1 = 0. (3.14)

Writing (pi, qi) in terms of (λ, µ, t) and using the parameterization (3.9) above, we get the

deformed Heun equation in canonical form

∂2
zψ1 + g1(z)∂zψ1 + g2(z)ψ1 = 0, (3.15a)

g1(z) =
1− 2θ0

z
+

1− 2θ1

z − 1
+

1− 2θt
z − t

− 1

z − λ
, (3.15b)

g2(z) =
κ1(κ2 + 1)

z(z − 1)
− t(t− 1)K

z(z − 1)(z − t)
+

λ(λ− 1)µ

z(z − 1)(z − λ)
, (3.15c)

with the accessory parameter K = K(θ;λ, µ, t) given by

K(θ;λ, µ, t) =
λ(λ− 1)(λ− t)

t(t− 1)

[
µ2 −

(
2θ0

λ
+

2θ1

λ− 1
+

2θt − 1

λ− t

)
µ+

κ1(κ2 + 1)

λ(λ− 1)

]
. (3.16)

Notice that (3.8) implies in

κ1(κ2 + 1) =

( ∑
i=0,1,t

θi −
1

2

)2

− θ2
∞. (3.17)
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As we saw above, the integrability conditions for the Fuchsian system are equivalent to the

isomonodromic equations (3.3). Using the parameterization above in terms of (λ, µ, t), the

isomonodromic equations reduce to the Garnier system [50, 53]

λ̇ =
∂K

∂µ
, µ̇ = −∂K

∂λ
. (3.18)

We denote a solution of the isomonodromic flow as (λ(t), µ(t)). The second order equation

for λ(t) is the Painlevé VI equation [31]. The PVI solutions are, in general, transcendental,

i.e., cannot be reduced to simple algebraic or special functions. Jimbo has used the isomon-

odromic technique [33] to find the asymptotics of the τ -function (3.5) and, consequently, of

the PVI transcendents, near its critical points t = 0, 1,∞. The full expansion of the PVI

τ -function was found only recently in [34]. We will review this formula in section 4.

3.2 Semiclassical BPZ Equations from the Fuchsian System

We claimed in section 2 that a certain heavy-light 6-point correlator naturally encodes

isomonodromic equations. To show this explicitly, we obtain the semiclassical Fuchsian

equation (2.13) from the Fuchsian system (3.6). Applying the transformation

ψ1(t|z, λ) = (z − λ)
1
2

∏
i=0,1,t

(z − ai)−
1
2

+θiψ(z, λ, t) (3.19)

to (3.15), we find the semiclassical Fuchsian equation

∂2
zψ +

(
− t(t− 1)H

z(z − 1)(z − t)
+

λ(λ− 1)p

z(z − 1)(z − λ)
+

+
∑
i=0,1,t

δi
(z − ai)2

+
−3

4

(z − λ)2
+
δ∞ −

∑
i=0,1,t δi + 3

4

z(z − 1)

)
ψ = 0, (3.20)

where the monodromy parameters are encoded by

δi ≡ δ(θi) =
1

4
− θ2

i (3.21)

and the accessory parameters are

p = µ+
∑
i=0,1,t

1− 2θi
2(λ− ai)

, (3.22)

H(θ;λ, p, t) =
λ(λ− 1)(λ− t)

t(t− 1)

[
p2 −

(
1

λ
+

1

λ− 1

)
p+

+
δ0

λ2
+

δ1

(λ− 1)2
+

δt
(λ− t)2

+
δ∞ − δ0 − δ1 − δt + 3

4

λ(λ− 1)

]
. (3.23)
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Now comparing (3.20) and (3.23) with (2.13) and (2.16), we find

H = −∂tS±σ (λ, t), p = ∂λS
±
σ (λ, t), (3.24)

and thus we have recovered the semiclassical BPZ equations of section 2 from the isomon-

odromic Fuchsian system.

At this point, probably it is not clear to the reader what is the relation between the

classical intermediate momentum σ in the semiclassical action and the Fuchsian system

parameters (λ, µ, t) (or (λ, p, t) in the Fuchsian equation (3.20)). We will clarify this point

in the rest of this section by discussing the relationship between the monodromy group, the

moduli space of flat connections and the semiclassical action.

3.3 Monodromy Group, Flat Connections and the Semiclassical Action

In this section, we will consider the Fuchsian system (3.6) in the SL(2,C) gauge, where

TrAi = 0. This can be obtained by the gauge transformation (3.39) discussed below. As-

suming that λ and t are fixed, the formal solution of (3.6) is given by

Ψ(z) = P exp

(∫ z

A

)
Ψ(z0), (3.25)

where P represents a path-ordered exponential and z0 is an arbitrary base point. A conse-

quence of this formula is that the poles of the gauge connection A(z) correspond to branch

points of Ψ(z). If we do the analytic continuation of Ψ(z) around a closed path γ, en-

closing one or more singular points, the solution will change by a monodromy matrix Mγ,

i.e., Ψγ = MγΨ. Elementary paths enclosing only one singular point ai have monodromy

matrix Mi and we label those matrices by their trace TrMi = 2 cos(2πθi). The four-point

monodromy group is then generated by three out of four SL(2,C) matrices obeying the

monodromy identity

M0MtM1M∞ = 1. (3.26)

As Ψ(z) is analytic everywhere except at the branch cuts, the knowledge of the related mon-

odromy data essentially determines the solution next to these points. The global information

on how to connect different local solutions is encoded in the composite monodromies, ob-

tained when a path encloses two singular points (two or more points for n > 4). For example,

Ψγ0t = M0MtΨ has composite monodromy parameter defined by TrM0Mt = −2 cos(2πσ0t)

(see figure 2). All representations of the 4-point monodromy group are labeled by 4 ele-

mentary monodromies θ = (θ0, θt, θ1, θ∞) and 3 composite monodromies σ = (σ0t, σ1t, σ01),

as this is the sufficient data to generate all possible loops around singular points in the

4-punctured sphere. We call (θ;σ) the monodromy data associated to Ψ(z).
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Figure 2. An elementary path γ0 has monodromy θ0 and a composite path γ0t enclosing two

singular points has composite monodromy σ0t.

Let us define the monodromy parameters by

pi = TrMi = 2 cos 2πθi, pij = TrMiMj = 2 cos 2πσij, i, j = 0, 1, t,∞. (3.27)

Assuming that the pi’s are fixed, irreducible representations of the monodromy group are la-

beled by three composite monodromies (p0t, p1t, p01). For SL(2,C) matrices, the monodromy

parameters also obey the Fricke-Jimbo relation [33]

p0tp1tp01 + p2
0t + p2

1t + p2
01 + p2

0 + p2
t + p2

1 + p0p1ptp∞ =

(p0pt + p1p∞)p0t + (p1pt + p0p∞)p1t + (p0p1 + ptp∞)p01 + 4, (3.28)

and thus only two composite monodromies are independent of each other. Following [33, 40],

if we fix the θ and σ0t, the Fricke-Jimbo relation can be parametrized in terms of s0t as(
p2

0t − 4
)
p1t = Dt,+ s0t +Dt,− s

−1
0t +Dt,0, (3.29a)(

p2
0t − 4

)
p01 = Du,+ s0t +Du,− s

−1
0t +Du,0, (3.29b)

with coefficients given by

Dt,0 = p0t (p0p1 + ptp∞)− 2 (p0p∞ + ptp1) , (3.30a)

Du,0 = p0t (ptp1 + p0p∞)− 2 (p0p1 + ptp∞) , (3.30b)

Dt,± = 16
∏
ε=±

sin π (θt ∓ σ0t + εθ0) sinπ (θ1 ∓ σ0t + εθ∞) , (3.30c)

Du,± = −Dt,±e
∓2πiσ0t . (3.30d)

Solving the system (3.29) for s0t when

σij + εθi + ε′θj /∈ Z, ε, ε′ = ±1, (3.31)

– 14 –



we get

s±0t(cos 2π(θt ∓ σ0t)− cos 2πθ0)(cos 2π(θ1 ∓ σ0t)− cosπθ∞)

= (cos 2πθt cos 2πθ1 + cos 2πθ0 cos 2πθ∞ ± i sin 2πσ0t cos 2πσ01)

− (cos 2πθ0 cos 2πθ1 + cos 2πθt cos 2πθ∞ ∓ i sin 2πσ0t cos 2πσ1t)e
±2πiσ0t . (3.32)

The special cases when (3.31) is not true correspond to reducible representations, which are

all listed in the context of PVI solutions in [28]. In those cases, to find s we should go back to

the Fricke-Jimbo relation (3.28). In conclusion, we can label irreducible representations of the

4-point monodromy group by two parameters (σ0t, s0t). This parametrization is essentially

the same under the permutation of the composite monodromies and its related to the number

of independent ways to slice the 4-punctured sphere into two pairs of pants [40].

3.3.1 Summary of Parameters

In section 3.1, we parametrized the gauge connection A(z) in terms of elementary mon-

odromies θ and two extra parameters (λ, µ) (or (λ, p)). Therefore, for fixed t, the moduli

space of flat connections A(z) can be labeled by (θ;λ, µ). From (3.25), it is clear that there

should be a map between the moduli parameters (λ, µ) and the monodromy parameters

(σ0t, s0t). This is the Riemann-Hilbert map for Fuchsian systems, the map between irre-

ducible representations of the monodromy group and the moduli space of flat connections

[40, 50]. As explicitly shown in [33], isomonodromic deformations define such map via the

integration constants (σ0t, s0t). Jimbo obtained the asymptotics of A(z;λ(t), µ(t), t) for small

t and showed that the formulas only depend on (θ;σ0t, s0t). This can then be used to find the

asymptotics of the τ -function and the PVI solutions (λ(t), µ(t)) in terms of (θ;σ0t, s0t). This

will become clear in section 4 when we discuss the isomonodromic τ -function expansion.

The semiclassical equation (3.20) is parametrized by λ and the accessory parameters H

and p, for fixed t and θ. As H is a function of (λ, p, t), these parameters label the possible

equations. If we assume that (λ(t), p(t)) are solutions of the isomonodromic equations, i.e.

λ̇ =
∂H

∂p
, ṗ = −∂H

∂λ
, (3.33)

then (λ(t), p(t)) are PVI solutions and can be labeled by the monodromy parameters (σ0t, s0t).

Therefore, for fixed (t,θ), we have that (λ(t), p(t)) ∼ (σ0t, s0t).

We also showed in (3.24) that the accessory parameters are given by derivatives of the

semiclassical action Sσ(λ(t), t). To complete the picture relating the semiclassical equation

(3.20) and the monodromy parameters, we need to show that the classical intermediate

momentum σ is the composite monodromy σ0t. Let us assume that, for fixed λ 6= 0, 1, t,∞,

the solution ψ(z, λ, t) of (3.20) has a small t expansion as

ψ(z, λ, t) = z
1
2
−σ0tf(z, λ) +O(t). (3.34)
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Assuming that (3.34) is well-defined at both z = 0 and z = t, for t small enough, σ0t

represents the composite monodromy parameter. Substituting (3.34) in (3.20), we find at

lowest order

H0 = δ0 + δt − δσ0t (3.35)

where H0 = limt→0 t(1− t)H. From CFT, we know that for small t

Sσ(λ, t) ∼ (δσ − δ0 − δt) log(t) (3.36)

and thus

H(λ, p, t) = −∂tSσ(λ, t) ∼ δ0 + δt − δσ
t

, (3.37)

which agrees with (3.35) if σ = σ0t. From here and in the rest of the paper, we define

(σ, s) ≡ (σ0t, s0t), unless otherwise stated.

In summary, for fixed (t,θ), we have the following set of parameters

Monodromy representations: (σ, s)

Semiclassical Action: (λ, σ)

Flat Connection: (λ, µ) (or (λ, p))

The assumption that (λ(t), µ(t)) is a solution of the isomonodromic flow connects the different

parameters, since all quantities of interest can be phrased in terms of (σ, s).

3.4 Fuchsian System and c = 1 BPZ equations

A natural question is whether it is possible to encode the level-2 heavy and light BPZ

equations into a Fuchsian system for any value of c. This was proved for a single c = 1 BPZ

equation in [54]. As we show below, we can recover each level-2 BPZ equation separately for

arbitrary c from an appropriate Fuchsian system. However, we can only consistently recover

both BPZ equations if c = 1. The relationship is true if the associated linear system allows

for isomonodromic deformations.

Let us first change the gauge of (3.1) by applying the transformation

Ψ =
n∏
i=1

[(z − ai)(λ− ai)]θiΦ, Ai = Bi + θi1 (3.39)

to (3.40), we get

ε1∂zΦ = B(z)Φ, (3.40a)

ε2∂λΦ = B(λ)Φ, (3.40b)

α∂aiΦ =

(
λ− z
λ− ai

)
Bi

z − ai
Φ, (i = 1, . . . , n) (3.40c)
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where ε1, ε2 and α are three arbitrary constants and

B(z) =
n∑
i=1

Bi

z − ai
=

(
B11(z) B12(z)

B21(z) B22(z)

)
,

n∑
i=1

Bi = 0, (3.41)

such that

TrBi = 0, TrB2
i = −2ε1ε2∆i. (3.42)

The choice of TrBi sets the SL(2,C) gauge for the Fuchsian system.

To derive a second order equation for Φ, we take the derivative of (3.40a) with respect

to z

ε1∂
2
zΦ = (∂zB +

B2

ε1
)Φ. (3.43)

Using the relation for sl(2,C) matrices

BiBj +BjBi = Tr(BiBj)1, (3.44)

we can easily show that

B2 =
n∑
i=1

(
−ε1ε2∆i

(z − ai)2
+

Hi

z − ai

)
1, (3.45)

where the accessory parameters are defined by

Hi ≡
∑
j 6=i

Tr(BiBj)

ai − aj
. (3.46)

From (3.40c) and (3.40b), we obtain

n∑
i=1

Bi

(z − ai)2
=
−ε1∂zΦ + ε2∂λΦ

z − λ
+

n∑
i=1

α∂aiΦ

z − ai
. (3.47)

Plugging (3.45) and (3.47) into (3.43) and dividing by ε2, we get

ε1
ε2

(
∂2
zΦ−

1

z − λ
∂zΦ

)
+

∂λΦ

z − λ
+

n∑
i=1

(
∆i

(z − ai)2
+

α
ε2
∂ai − 1

ε1ε2
Hi

z − ai

)
Φ = 0. (3.48)

Now we apply the transformation

Φ(a|z, λ) = (z − λ)
1
2 [h(a)]

1
αε1 χ(a|z, λ) (3.49)

in (3.48), with the choice

Hi(a) = ∂ai log h(a). (3.50)
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Notice that (3.46) and (3.5) imply that h(a) is the τ -function up to a overall function of t.

Then we get the following equation for χ[
ε1
ε2
∂2
z +

∆H

(z − λ)2
+

∂λ
z − λ

+
n∑
i=1

(
∆i

(z − ai)2
+

α
ε2
∂ai

z − ai

)]
χ(a|z, λ) = 0, (3.51)

where ∆H = −3ε1
4ε2
− 1

2
. Setting α = ε2 and b2 = ε2/ε1, this equation becomes the generaliza-

tion of the BPZ equation (2.5a) for a correlator with n arbitrary insertions at z = a and two

degenerate insertions, one at z and another at λ. However, if we repeat the same procedure

for (3.40b), we only get the second BPZ equation (2.5b) if we choose α = −ε1. This means

that α = ε2 = −ε1 is a sufficient condition for the Fuchsian system (3.40) consistently repro-

duce the two BPZ equations. Accordingly, b = i and thus c = 1 in the CFT interpretation.

Using the parametrization (2.1) and (2.2), the c = 1 BPZ equations are thus[
−∂2

z +
1
4

(z − λ)2
+

∂λ
z − λ

+
n∑
i=1

(
θ2
i

(z − ai)2
+

∂ai
z − ai

)]
χ(a|z, λ) = 0, (3.52a)

[
−∂2

λ +
1
4

(λ− z)2
+

∂z
λ− z

+
n∑
i=1

(
θ2
i

(λ− ai)2
+

∂ai
λ− ai

)]
χ(a|z, λ) = 0, (3.52b)

where ∆i = θ2
i is the c = 1 conformal weight. This shows that the Fuchsian system (3.40)

with ε2 = −ε1 simultaneously encodes the monodromy data of the two c = 1 BPZ equa-

tions above. Moreover, this fact is the starting point of the original argument of why the

isomonodromic τ -function is equivalent to a c = 1 correlator [34]. For a proof of this fact,

see [40].

4 Accessory parameter from the Isomonodromic τ-function

We previously discussed how the accessory parameter H(λ(t), p(t), t) in (3.20) can be written

in terms of the monodromy data (θ;σ, s), given that (λ(t), p(t)) are solutions of the isomon-

odromic flow. Now we want to use this fact to write the accessory parameter expansion Hx of

Heun’s equation (1.3) in terms of the monodromy data. The key point is to impose a special

initial condition for the isomonodromic flow, which we discuss next. Then we will present

our algorithm on how to solve this initial condition and obtain Hx using the τ -function ex-

pansion of [34]. We review the τ -function expansion in section 4.2, solve the initial condition

in section 4.3 and finally present the accessory parameter expansion in section 4.4.

4.1 Accessory Parameter from Initial Conditions

Let us focus on the n = 4 isomonodromic system (3.6). Here we discuss how to recover

the accessory parameter of Heun’s equation (1.3) from the deformed Heun’s equation (3.15)
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by an appropriate initial condition on (λ(t), µ(t)) at t = x. The canonical form of (1.3),

obtained by the transformation ψ =
∏

i=0,1,x(z − ai)(1−2θi)/2 y, is given by

y′′(z) +

(
1− 2θ0

z
+

1− 2θ1

z − 1
+

1− 2θx
z − x

)
y′(z) +

(
κ1(κ2 + 1)

z(z − 1)
− x(x− 1)Kx

z(z − 1)(z − x)

)
y(z) = 0,

(4.1)

where the accessory parameters of both equations are related by

Hx = Kx +
(1− 2θ0)(1− 2θx)

2x
+

(1− 2θ1)(1− 2θx)

2(x− 1)
. (4.2)

Consider the deformed Heun equation (3.15), which we repeat here for convenience to the

reader,

y′′ +

(
1− 2θ0

z
+

1− 2θ1

z − 1
+

1− 2θt
z − t

− 1

z − λ(t)

)
y′+

+

(
κ1(κ2 + 1)

z(z − 1)
− t(t− 1)K(θ;λ(t), µ(t), t)

z(z − 1)(z − t)
+

λ(λ− 1)µ(t)

z(z − 1)(z − λ(t))

)
y = 0, (4.3)

with

K(θ;λ, µ, t) =
λ(λ− 1)(λ− t)

t(t− 1)

[
µ2 −

(
2θ0

λ
+

2θ1

λ− 1
+

2θt − 1

λ− t

)
µ+

κ1(κ2 + 1)

λ(λ− 1)

]
. (4.4)

We recover (4.1) from (4.3) by applying the following initial condition for the isomonodromic

flow to (4.3) [55, 56]

t = x, λ(x) = x, µ(x) = −Kx

2θt
, θt = θx −

1

2
. (4.5)

We show in Appendix A that this condition is well-posed with respect to the isomonodromic

equations. As we discussed before, (λ(t), µ(t)) have (σ, s) as integration constants, so im-

posing (4.5) seems equivalent to fix the values of (σ, s) separately. However, as we are going

to see next, due to the special structure of the isomonodromic flow, the condition λ(x) = x

implies a non-trivial relation s = s(σ, x) between the composite monodromy parameters.

This means that Heun’s equation (4.1) lives in a proper subspace of all possible Fuchsian

opers with 4 singulars points.

Litvinov et al [3] found the accessory parameter expansion of Hx by regularizing the

PVI action via the solution of PVI equation with λ(x) =∞. Here we present an alternative

way to calculate the accessory parameter using the isomonodromic τ -function expansion [34]

with the condition λ(x) = x. This gives a clearer implementation of the proposal [3] and, in

addition, suggests a deeper connection between c = ∞ and c = 1 conformal blocks. Notice

that the condition λ(x) =∞ is equivalent to our choice by a bi-rational transformation [28].

Our algorithm to find the accessory parameter expansion consists of three steps
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1. Write the accessory parameter Hx in terms of the isomonodromic τ -function;

2. Solve the initial condition λ(x) = x to obtain a monodromy constraint s = s(σ, x);

3. Substitute the constraint s = s(σ, x) in the τ -function to obtain Hx.

We will show below that the condition λ(x) = x can be phrased in terms of the τ -function,

which is essential to find s(σ, x) as a series expansion in x. We remind the reader that the

well-posedness of the initial condition is discussed in appendix A. After obtaining s(σ, x),

to obtain the accessory parameter expansion is just a matter of straightforward calculation.

This calculation is cumbersome at higher orders, so we show it explicitly only up to order

x0 in this section. In Appendix C, we reproduce the analytic CFT formulas up to order x2

and present numerical evidence up to order x5, compared to the direct CFT approach.

The key to understand the relation s = s(σ, x) is to phrase the initial conditions in terms

of the isomonodromic τ -function. We will do this in the next subsection. Here we express

Hx in terms of the τ -function. For convenience we define

θs1,s2 = ( θ0, θ1, θt + 1
2
s1, θ∞ + 1

2
s2), s1, s2 = 0,±, (4.6)

and θ0,0 ≡ θ. The definition of the isomonodromic Hamiltonian (3.5) for our particular

4-point case is given by

HS,t =
Tr(A0At)

t
+

Tr(A1At)

t− 1
. (4.7)

Using the parameterization (3.9) for the Ai’s in (4.7), we find that

HS,t(θ0,+;λ, µ, t) = K(θ+,+;λ, µ, t) +
4θ0θt
t

+
4θ1θt
t− 1

. (4.8)

Imposing the initial conditions (4.5) in (4.8), we obtain

Kx =
d

dt
log[t−4θ0θt(1− t)−4θ1θtτS(θ0,+; t)]

∣∣∣∣
t=x

, (4.9)

where we used the τ -function definition

HS,t(θ0,+;λ(t), µ(t), t) =
d

dt
log τS(θ0,+; t). (4.10)

Notice that (4.9) substitutes the initial condition for µ(x) in (4.5), as it gives Kx in terms of

the monodromy data. Together with (4.2), we can then find Hx in terms of the τ -function.
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4.2 CFT Expansion of the τ-function

In order to proceed, we need to introduce the τ -function expansion of [34]. For later conve-

nience, we define a slightly different τ -function

τS(θ; t) = t2θ0θt(1− t)4θ1θt tσ
2−θ20−θ2t τ(θ; t). (4.11)

This new τ -function changes the Hamiltonian, but does not change the equations of motion,

as it is multiplied by a pure function of t. The complete expansion of the Painlevé VI

τ -function, adapted to our definition (4.11), is given by

τ(θ; t) =
∑
n∈Z

C(θ, σ + n)sntn(n+2σ)B(θ, σ + n; t), (4.12)

where we assume that the real part of sigma <σ obeys

0 ≤ <σ < 1

2
. (4.13)

The structure constants are given in terms of Barnes functions3

C(θ, σ) =

∏
ε,ε′=±G(1 + θt + εθ0 + ε′σ)G(1 + θ1 + εθ∞ + ε′σ)∏

ε=±G(1 + 2εσ)
, (4.14)

and the B’s are the c = 1 conformal blocks, given by the AGT combinatorial series

B(θ, σ; t) =
∑
λ,µ∈Y

Bλ,µ(θ, σ)t|λ|+|µ|, (4.15)

summing over pairs of Young diagrams λ, µ with

Bλ,µ(θ, σ) =
∏

(i,j)∈λ

((θt + σ + i− j)2 − θ2
0)((θ1 + σ + i− j)2 − θ2

∞)

h2
λ(i, j)(λ

′
j + µi − i− j + 1 + 2σ)2

×

∏
(i,j)∈µ

((θt − σ + i− j)2 − θ2
0)((θ1 − σ + i− j)2 − θ2

∞)

h2
µ(i, j)(λi + µ′j − i− j + 1− 2σ)2

, (4.16)

where (i, j) denotes the box in the Young diagram λ, λi the number of boxes in row i, λ′j
the number of boxes in column j and hλ(i, j) = λi + λ′j − i− j + 1 its hook length. A proof

for this expansion is available in [40] and alternatively in [57].

3Defined by the functional relation G(z+ 1) = Γ(z)G(z), with Γ(z) being the Euler gamma function. For

further properties, see appendix A of [43].
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4.3 Solving the condition λ(x) = x

Inspired by [3], our approach to find Hx is to solve the condition λ(x) = x by assuming a

series expansion for s = s(σ, x) in x. The Painlevé property implies that the PVI solution

is regular at t = x for any x 6= 0, 1,∞ [3, 28, 50]. As we are going to see below, this fact

is consistent with the τ -function also being regular at t = x. Okamoto’s formula [58] gives

λ(t) in terms of a ratio of τ -functions

λ(t)− t =
t(t− 1)

2θ∞

d

dt
log

τ(θ0,−; t)

τ(θ0,+; t)
, (4.17)

where τ(θ, t) is given by (4.12). Evaluated at t = x, the left hand side vanishes because of

our initial condition. Assuming that θ∞ 6= 0 and neither of the τ -functions above vanishes

or blows up at λ(x) = x, we have that[
d

dt
[τ (θ0,−; t)] τ (θ0,+; t)− d

dt
[τ (θ0,+; t)] τ (θ0,−; t)

] ∣∣∣∣∣
t=x

= 0. (4.18)

In the following, we rewrite the condition (4.18) as a double series expansion. To do this,

let us introduce some definitions. The isomonodromic Hamiltonian (4.10) and the accessory

parameter expansion (4.9) do not depend on the normalization of the τ -function, so we

normalize the structure constants as

C̄n(θ, σ) ..=
C(θ, σ + n)

C(θ, σ)
. (4.19)

As we prove in Appendix B, these ratios can be factorized as

C̄n(θ, σ) = Cn(θ, σ)A(θ, σ)n, (n > 0) (4.20)

where Cn(θ, σ) is given by (B.7) and A(θ, σ) is given by (B.4). Another important formula

is

C̄n(θ0,− , σ) = fn(θ , σ)C̄n(θ0,+ , σ), (n > 0) (4.21)

where

fn(θ, σ) =

|n|∏
k=1

(
σ + k − 1

2
− θ∞

)2 − θ2
1(

σ + k − 1
2

+ θ∞
)2 − θ2

1

, f0(θ, σ) = 1. (4.22)

For n < 0, we change σ → −σ in the formulas above.

Plugging (4.19) and (4.20) into (4.12), we get

τ(θ; t) =
∑
n∈Z

Cn(θ, σ)B(θ, σ + n; t)tn
2

[X(θ, σ, s; t)]n, (4.23)
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where

X(θ, σ, s; t) ..= A(θ, σ)s t2σ. (4.24)

We can rewrite the c = 1 blocks (4.15) in terms of levels L

B(θ, σ + n; t) =
∞∑
L=0

B(L)
n (θ, σ) tL, (4.25)

where

B(L)
n (θ, σ) =

∑
|λ|+|µ|=L

Bλ,µ(θ, σ + n) (4.26)

is a restricted sum at level L of the coefficients (4.16). We will suppress the monodromy argu-

ments in what follows, for simplicity, except the ones that are shifted. Using the definitions

(4.23) and (4.25), we get

τ (t) =
∑
n∈Z

Cn
∞∑
L=0

B(L)
n [X(t)]n tn

2+L, (4.27)

d

dt
τ (t) =

∑
n∈Z

Cn
∞∑
L=0

(n (n+ 2σ) + L)B(L)
n [X(t)]n tn

2+L−1, (4.28)

where we used
dX(t)

dt
=

2σ

t
X(t). (4.29)

Using (4.27) and (4.28) in (4.18), with the properly shifted monodromies and considering

(4.21), the equation (4.18) can be rewritten as

∑
n,p∈Z

∞∑
L,M=0

D

[
L M

n p

]
xn

2+p2+L+M−1[X(x)]n+p = 0, (4.30)

where

D

[
L M

n p

]
≡ Cn(θ0,+, σ) Cp(θ0,+, σ)

[
fn(θ0,+, σ)B(L)

n (θ0,−, σ)B(M)
p (θ0,+, σ) −

− fp(θ0,+, σ)B(L)
n (θ0,+, σ)B(M)

p (θ0,−, σ)
]
× [n (n+ 2σ) + L] . (4.31)

Given that λ(t) admits a regular expansion near t = x, so does the right hand side of (4.17).

This implies that X(x) also admits a Taylor expansion for x small

X(θ, σ, s(σ, x);x) =
∞∑
k=0

Xk(θ, σ)xk, (4.32)
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where we assume that s = s(σ, x) is the source of the series expansion. Our goal is to

extract the coefficients Xk = Xk(θ, σ) by solving (4.30) order by order in x. Therefore, this

procedure gives us the coefficients of the s = s(σ, x) series solution.

We rewrite (4.30) as a double series condition

∞∑
α=0

nα∑
β=−nα

eα,β x
α[X(x)]β = 0, (4.33)

with

eα,β =
∑′

n,p,L,M

D

[
L M

n p

]
, (4.34)

where the
∑′

means that the summation is over all n, p ∈ Z; L,M = 0, 1, 2, . . . such that

n2 + p2 + L+M − 1 = α and n+ p = β. From (4.31), we see that

D

[
0 M

0 p

]
= 0, ∀ p,M. (4.35)

This means that the α = −1 term does not contribute to (4.30). For fixed α, we have that

−nα ≤ β ≤ nα, where nα =
⌊√

α + 1
⌋
, with bxc being the floor function of x. To explain the

β constraint, let us consider both n and p to be positive (or both negative). For fixed α, the

upper bound on β can be reached when L = M = 0 so that α+ 1 = n2 +p2 ≥ (n+ p)2 = β2.

Let us now go back to (4.30). For α = 0, we have −1 ≤ β ≤ 1 and thus

D

[
0 0

−1 0

]
X−1

0 +D

[
1 0

0 0

]
+D

[
0 0

1 0

]
X0 = 0,

which, using (4.31), (4.26), (4.22) and (B.7), we can show it is equivalent to

(θt + σ)2 − θ2
0

4σ2
X−1

0 +

(
θ2

0 − σ2 − θ2
t

2σ2

)
+

(θt − σ)2 − θ2
0

4σ2
X0 = 0. (4.36)

This is essentially the same equation presented in [3] obtained from the PVI solution4. It

gives two solutions for X0 and we choose X0 = 1 at this order, for consistency with the

asymptotics of the PVI solution, as discussed in [3]. Plugging back X(x) = 1 + X1x + . . .

to (4.33), the higher order equations in x will give only one solution for the coefficients Xk.

The next two coefficients are given in Appendix C in terms of σ and δ’s.

4With the corresponding Bäcklund transformation θ0 → θ1 and θt → θ∞ + 1
2 .
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4.4 Accessory Parameter Expansion

Substituting the definition (4.11) into (4.9) and then into (4.2), we get Hx in terms of the

τ -function

Hx =
δ0 + δx − δσ

x
+

(1− 2θ1)(1− 2θx)

2(x− 1)
+
d

dt
log τ(θ0,+; t)

∣∣∣
t=x
. (4.37)

Notice that the first term in (4.37) is already the expected answer from CFT, as it comes from

the leading behavior of the classical conformal block. The final step in our algorithm is to

take the series solution for X(x) obtained above and plug it back into the τ -function in (4.37),

with the substitution θt = θx − 1
2
. This computation is straightforward but demanding, so

we will not discuss it here in general form. We will show below how the computation works

for the first non-trivial term. This will make it clear how to proceed to obtain higher-order

terms.

Remembering that X(t) = Ast2σ, under the assumption 0 < <σ < 1
2
, we have the small

t expansion of (4.23)

τ(t) = 1 +
(
C1X(t) + C−1X(t)−1 + B(1)

0

)
t+O(t2(1±<σ)),

and
d

dt
τ(t) = (1− 2σ)C−1X(t)−1 + (1 + 2σ)C1X(t) + B(1)

0 +O(t1±2<σ), (4.38)

The τ -function has no well-defined Taylor expansion around t = 0 because its first derivative

diverges as t−2σ. On the other hand, it is possible to do such expansion near a regular point

t = x, for x sufficiently close to zero. In this sense, we are allowed to write

d

dt
log τ(t) ∼ (1− 2σ)C−1X(t)−1 + (1 + 2σ)C1X(t) + B(1)

0

1 +
(
C1X(t) + C−1X(t)−1 + B(1)

0

)
t

. (4.39)

Using that X(t = x) = 1 +X1x+ . . . and B(1)
0 = B0,1 + B1,0, we have

d

dt
log τ(t)

∣∣∣∣
t=x

= (1− 2σ)C−1 + (1 + 2σ)C1 + B0,1 + B1,0 +O(x) (4.40)

to leading order in x. From (B.7), we see that

(1 + 2σ)C1 + (1− 2σ)C−1 =

=

[
(θt − σ)2 − θ2

0

] [
(θ∞ + σ)2 − θ2

1

]
4σ2(1 + 2σ)

+

[
(θt + σ)2 − θ2

0

] [
(θ∞ − σ)2 − θ2

1

]
4σ2(1− 2σ)

(4.41)
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and from (4.16)

B1,0 + B0,1 =

=

[
(θt − σ)2 − θ2

0

] [
(θ1 − σ)2 − θ2

∞
]

4σ2
+

[
(θt + σ)2 − θ2

0

] [
(θ1 + σ)2 − θ2

∞
]

4σ2
. (4.42)

If we carefully sum (4.41) and (4.42), substituting θ2
i = 1/4− δi and the shifted monodromy

values θt → θx − 1
2
, θ∞ → θ∞ + 1

2
, we get

(δσ + δx − δ0)(δσ + δ1 − δ∞)

2δσ
+ (1− 2θ1)(1− 2θx). (4.43)

The second term above cancels with the second term of (4.37) and the first term above

matches the standard CFT result [3]. The next order calculation is much more complicated,

so we show here the result for (4.37) only up to first order in x

Hx =
δ0 + δx − δσ

x
+

(δ0 − δσ − δx)(δσ + δ1 − δ∞)

2δσ
+O(x). (4.44)

We present the next two terms in the expansion above in appendix C.

We implemented the algorithm of this section in a computer algebra program, as we

do not have the explicit series solution for the constraint (4.33). We tested the accessory

parameter expansion up to order x2 analytically by comparing with the semiclassical limit

of the CFT conformal block [3, 25] using the inverse gram matrix approach [43, 59]. We also

checked this algorithm numerically, substituting the θ’s with some fixed numbers from the

beginning, up to order x5. More details are given in appendix C. This gives strong evidence

that the isomonodromic approach presented here reproduces the classical conformal block

expansion. Although we do not have a proof to all orders in x, we believe that our discussion

above on the semiclassical limit and isomonodromic deformations, given the exponentiation

hypothesis and the assumptions on the conformal weights, is enough mathematical evidence

for the τ -function expansion.

In addition, according to our tests, it is numerically faster to calculate the accessory

parameter expansion with our approach than inverting the Gram matrix and taking the

semiclassical limit. We did not compare our approach with the Zamolodchikov recurrence

formula, but, then again, the exact large c limit is also demanding in this case, while our

algorithm already gives the analytic coefficients in the semiclassical limit.

5 Isomonodromic Approach to Classical Conformal Blocks

Now that we found the accessory parameter using the isomonodromic τ -function, an inter-

esting question is if we can find an analogous formula for classical conformal blocks. One way
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to approach this problem is to use the symplectic structure of isomonodromic deformations

[3, 55]. As we discussed above, Sσ(λ, t) is the action of the isomonodromic Hamiltonian

system

λ̇ =
∂H

∂p
, ṗ = −∂H

∂λ
, (5.1)

determined by the Hamilton–Jacobi equation (2.17). The associated symplectic structure is

given by

Ω = dp ∧ dλ− dH ∧ dt. (5.2)

Defining the one-form

ω = pdλ−Hdt, (5.3)

we recover Ω = dω. We can define the action as the generating function of the canonical

transformation from (p, λ) to action-angle coordinates (σ, ν)

dSσ = pdλ−Hdt+ νdσ. (5.4)

Here σ = σ0t and ν is the canonically conjugate variable to σ [3, 26]. These coordinates

parameterize the moduli space of SL(2,C) flat-connections, similarly to (σ, s). The transfor-

mation

p(µ) = µ+
∑
i=0,1,t

1− 2θi
2(λ− ai)

, (5.5)

H(θ;λ, p(µ), t) = K(θ;λ, µ, t)+

+
(1− 2θ0)(1− 2θt)

2t
+

(1− 2θ1)(1− 2θt)

2(t− 1)
+

1− 2θt
2(λ− t)

(5.6)

between the normal form (3.20) and the canonical form (3.15) is canonical with respect to

Ω [50]. This induces a transformation

Sσ = Scσ + g(λ, t) (5.7)

by the function

g(λ, t) = log

[∏
i=0,1

(t− ai)−2( 1
2
−θi)( 1

2
−θt)

∏
i=0,1,t

(λ− ai)
1
2
−θi

]
(5.8)

and thus

dScσ = µdλ−Kdt+ νdσ. (5.9)
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Integrating (5.9) over a solution of the isomonodromic system, as the action-angle vari-

ables are constant on the orbits, we get

Scσ(λ(t), t) =

∫ (λ(t),t)

(λ(0),0)

(µdλ′ −Kdt′) =

∫ t

0

(
µ
dλ′

dt′
−K

)
dt′. (5.10)

Let us try to simplify the PVI Lagrangian as much as possible. First, we notice that

λ̇ =
∂K

∂µ
=
λ(λ− 1)(λ− t)

t(t− 1)

[
2µ−

(
2θ0

λ
+

2θ1

λ− 1
+

2θt − 1

λ− t

)]
(5.11)

and therefore

µλ̇−K =
λ(λ− 1)(λ− t)

t(t− 1)
µ2 − κ(λ− t)

t(t− 1)
. (5.12)

Using Okamoto’s formula (4.17), we can integrate the second term in (5.12)

Scσ(λ(t), t) =

∫ t

0

λ(t′)(λ(t′)− 1)(λ(t′)− t′)
t′(t′ − 1)

µ(t′)2 dt′ − κ

2θ∞
log

τ(θ0,−; t)

τ(θ0,+; t)

∣∣∣∣∣
t

0

. (5.13)

As both τ -functions have the same leading behaviour as t goes to zero, only the upper limit

contributes to the second term above. Another equation proved by Okamoto in [58] is

λ(λ− 1)µ = −κ1(λ− t) + t(t− 1)
d

dt
log

[
τ(θ−,0; t)

τ(θ0,+; t)
tθ0+θt−

1
4

]

=
t(t− 1)

2θ∞

d

dt
log

[(
τ+

τ−

)κ1 (
tθ0+θt−

1
4
τ0

τ+

)2θ∞
]
, (5.14)

where we used (4.17) in the second line and

τ+
..= τ(θ0,+; t), τ− ..= τ(θ0,−; t), τ0

..= τ(θ−,0; t). (5.15)

It also follows from (4.17) that

λ =
t(t− 1)

2θ∞

d

dt
log

[
(t− 1)2θ∞

τ−
τ+

]
, λ− 1 =

t(t− 1)

2θ∞

d

dt
log

[
t2θ∞

τ−
τ+

]
. (5.16)

We then use (5.14) and (5.16) to express the action only in terms of τ -functions

Scσ(λ(t), t) =
1

2θ∞

∫ t

0

I[τ±, τ0; t′] dt′ − κ

2θ∞
log

(
τ−
τ+

)
, (5.17)
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where

I[τ±, τ0; t] =

d
dt

log
(
τ−
τ+

){
d
dt

log

[(
τ+
τ−

)κ1 (
tθ0+θt−

1
4 τ0
τ+

)2θ∞
]}2

d
dt

log
(
t2θ∞ τ−

τ+

)
d
dt

log
(

(t− 1)2θ∞ τ−
τ+

) . (5.18)

Although (5.17) is still complicated, substitution of (4.23) into (5.18) should give a formula

for it only in terms of known functions of the monodromies. However, to get a closed form

for the 4-point classical conformal block (1.1), we still need to impose the condition λ(x) = x

into the resulting formula, following the procedure of the previous section. As we can only

solve this condition order-by-order in x, a closed form is still out of reach. But, as we are

going to see below, some special cases can be tractable. We leave the detailed study of this

formula for future work.

5.1 Recovering the 4-point Classical Conformal Block

The 5-point semiclassical block (2.12) is given by

〈Vδ0(0)Vδt(t) Πσ ϕH(λ(t))Πσ± 1
2
Vδ1(1)Vδ∞(∞)〉 ∼ exp

(
1

b2
S±σ (λ(t), t)

)
= (λ(t)− t)( 1

2
−θt)/b2

∏
i=0,1

[
(t− ai)−2( 1

2
−θi)( 1

2
−θt)/b2(λ− ai)( 1

2
−θi)/b2

]
exp

(
1

b2
Sc,±σ (λ(t), t)

)
,

(5.19)

where we used (5.7). We label the fields by their classical weights δi and Πσ corresponds

to the projection operator onto the intermediate state with momentum P = iσ/b. Notice

that because λ(t) is a solution of isomonodromic deformations, we can change the position of

the heavy degenerate field without changing the other monodromies. This has a nice AdS3

interpretation, as degenerate insertions are conical defects in the bulk [60–62]. The PVI

action governs the evolution of this conical defect in a way that the monodromies do not

change. Therefore, we impose the boundary condition for the isomonodromic flow at t = x

to be λ(x) = x. This entails to taking the fusion

ϕH(λ(t))Vδt(t) = C+(λ(t)− t)( 1
2
−θt)/b2Vδ( 1

2
+θt)

(t) + C−(λ(t)− t)( 1
2

+θt)/b2Vδ( 1
2
−θt)(t). (5.20)

Our choice (5.19) clearly corresponds to taking C− = 0 so that the leading term in the OPE

cancels with the appropriate term in right hand side of (5.19). Therefore, we end up with

〈Vδ0(0)Vδx(x)ΠνVδ1(1)Vδ∞(∞)〉 =
∏
i=0,1

(x− ai)−2( 1
2
−θi)( 1

2
−θx)/b2 exp

(
1

b2
Sc,±σ (x; θ)

)
, (5.21)
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where we defined θt = θx − 1
2

and ν = σ ± 1
2
. The identification of the classical conformal

block with the τ -function in (5.17) is a new result with important technical consequences,

as the τ -function is a linear combination of c = 1 conformal blocks, as described in [34].

Linear Dilaton Case

In some special cases, the PVI solutions dramatically simplify. The simplest example is

obtained by assuming ∑
i=0,1,t

θi + θ∞ =
1

2
(5.22)

and σij = θi + θj, i, j = 0, 1, t. This implies that κ2 + 1 = 0 (see (3.8)) and thus µ(t) = 0 is

consistent with the equations of motion (3.18) [50]. Therefore, (5.13) gives Scσ = 0 and the

PVI action is given by

Sσ(λ(t), t) = log

[
(t(t− 1))θt−

1
2

∏
i=0,1,t

(λ(t)− ai)
1
2
−θi

]
(5.23)

leading to the 4-point conformal block (5.21)

〈Vδ0(0)Vδx(x)ΠνVδ1(1)Vδ∞(∞)〉 = x−2α0αx(x− 1)−2α1αx , (5.24)

where ν = θ0 + θx and

αi =

(
1

2
− θi

)
1

b2
, (5.25)

according to the alternative Liouville definition ∆i = αi(Q − αi). This corresponds to the

semiclassical limit of the linear dilaton correlator obeying the screening condition [48]∑
i=0,1,x,∞

αi = Q→ 1

b2
as b→ 0. (5.26)

Notice that, in the c = 1 interpretation, the τ -function is a hypergeometric function [43, 63],

showing the non-triviality of this case in comparison to the c =∞ result.

6 Conclusions

In this work, we discussed the deep mathematical relation between the large central charge

limit of conformal blocks and the isomonodromic τ -function. We recovered the accessory

parameter (4.37) of the 4-point Fuchsian equation (1.3) using the isomonodromic τ -function,

with the additional fusion constraint λ(x) = x. We believe our approach gives a more

straightforward algorithm than the one presented in [3].
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The isomonodromic approach is relevant to applications of the theory of differential

equations, as there is no need to take any semiclassical limit, in comparison to the CFT

approach to calculate the accessory parameters. Thus, it can be applied to any particular

problem that is governed by a Heun’s equation. Recently, Piatek and Pietrykowski [64] re-

covered Floquet solutions of Heun’s equation using CFT. This result nicely complements our

discussion of accessory parameters. These techniques might be used in many concrete appli-

cations. In particular, the isomonodromic method has already proved useful for scattering

problems in black hole physics [55, 56, 65].

We can also use it to calculate accessory parameters of confluent cases of Heun’s equation,

using the corresponding τ -functions described in [43, 66]. Those are connected to the so-

called irregular conformal blocks [67–69], which deserve to be better understood in CFT

applications. Finally, we notice that it is straightforward to generalize the isomonodromic

method for Fuchsian equations with any number of singular points by using the appropriate

τ -function [40, 70]. Our algorithm can then be generalized to find the accessory parameters

and classical conformal blocks of n-point correlators.

The integral formula (5.17) for the PVI action is the first step to a closed expression for

the 4-point classical conformal block (1.1). Using the τ -function c = 1 expansion, it should

be possible to fully integrate the PVI action and impose the fusion constraint to obtain

(1.1). This has many potential applications, in particular, related to the AdS/CFT corre-

spondence: the emergence of AdS3 gravity backgrounds [6, 8], calculations of entanglement

entropy [5] and the bulk computation of classical blocks from the geodesic approach [10–14].

In fact, the isomonodromic approach generalizes the monodromy method of [5, 71]. The

main obstruction is solving the PVI boundary condition in closed form. We gave a simple

example where the PVI solution simplifies and recovers the c = ∞ limit of a linear dilaton

conformal block [48]. Many other special limits remain to be explored, for example, the

classical, algebraic and Riccati solutions of PVI [34, 43]. Moreover, the connection between

the isomonodromic and the AGT approaches [25, 72] can give further insights on all these

applications.

Although the relationship between classical conformal blocks, Painlevé VI equation and

isomonodromic deformations has been discussed before [3, 41, 42], the importance of the

τ -function has been fully appreciated only here. This relation is relevant not only from the

technical point of view, but also highlights the intriguing map between the c = 1 and c =∞
conformal blocks. Coulomb Gas (Dotsenko–Fateev) integral [59] and Fredholm determinant

[70, 73, 74] representations of conformal blocks might also be useful to understand this map.

Another important question is what is the quantum counterpart of the c = 1 isomon-

odromic structure described here. A related development is that the canonical quantiza-

tion of the isomonodromic equations is equivalent to the Knizhnik–Zamolodchikov (KZ)

equations (equivalently the isomonodromic equations are the classical limit of the KZ equa-
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tions) [75, 76]. Solutions of BPZ equations can be related to solutions of KZ equations

[77–79], connecting Liouville theory to WZNW models. This web of relations, in connection

to AGT correspondence and Hitchin systems, was reviewed in [41, 42]. These papers also

briefly mention the role of the isomonodromic τ -function in the semiclassical CFT limit.

More recently, the authors of [80] have proposed a generalization of the isomonodromy/CFT

correspondence to arbitrary central charge using q-Painlevé conformal blocks [81] and cluster

algebras. It would be interesting to study how the classical limit studied here emerges from

this quantum description.

The physical meaning of the c = 1 and c = ∞ relationship, if any, deserves further

exploration in the future and we hope our work will be helpful in this direction too.
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A Well-posedness of Initial Conditions

Here we show that the boundary conditions

λ(x) = x, µ(x) = −Kx

2θt
, (A.1)

are well-posed with respect to the isomonodromic flow. The Garnier system (3.33) is given

by

λ̇ =
λ(λ− 1)(λ− t)

t(t− 1)

(
2µ− 2θ0

λ
− 2θ1

λ− 1
− 2θt − 1

λ− t

)
, (A.2a)

µ̇ = − 1

t(t− 1)

[
(λ(3λ− 2) + t(1− 2λ))µ2

+(2θ0(−2λ+ t+ 1) + 2θ1(t− 2λ)− (2λ− 1) (2θt − 1))µ+ κ1(κ2 + 1)
]
. (A.2b)

This system has three critical points at t = 0, 1,∞. Close to these singular points, the

asymptotics of λ(t) can be obtained via Painlevé VI solutions [28]. Our initial condition

is defined close to a regular point t = x, with x 6= 0, 1,∞. Therefore, the solution of the
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Garnier system can be expressed as Taylor series in a neighborhood around t = x. If we

substitute the series solution around t = x

λ(t) = x+ λ1(t− x) +
λ2

2
(t− x)2 + · · · , (A.3)

µ(t) = µ0 + µ1(t− x) + · · · (A.4)

into (A.2), we get that λ1 = 1− 2θt and that λ2 and µ1 are determined explicitly in terms of

x, θ’s and by µ0. This means that µ0 can be taken as any finite constant, for example, the

initial condition (A.1). Therefore, the initial conditions (A.1) are consistent with a series

solution of the Garnier system around t = x.

B Ratio of Painlevé VI Structure Constants

Let Cn ≡ C(θ, σ + n), where C(θ, σ) is given by (4.14). A useful formula is the ratio of two

structure constants [34]

Cn±1

Cn
= −Γ2 (1∓ 2(σ + n))

Γ2 (1± 2(σ + n))

∏
ε=±

Γ (1 + εθ0 + θt ± (σ + n)) Γ (1 + εθ∞ + θ1 ± (σ + n))

Γ (1 + εθ0 + θt ∓ (σ + n)) Γ (1 + εθ∞ + θ1 ∓ (σ + n))
×

× (θ2
0 − (θt ∓ (σ + n))2) (θ2

∞ − (θ1 ∓ (σ + n))2)

4 (σ + n)2 (1± 2(σ + n))2 , (B.1)

which can be derived from (4.14). Using that

Γ(z + n) = (z)nΓ(z), Γ(z − n) =
(−1)nΓ(z)

(1− z)n
, (B.2)

where (z)n = z(z + 1) . . . (z + n− 1) is the Pochhammer symbol, we have

Cn±1

Cn
=

(∏
ε=±

(1 + εθ0 + θt + σ)n(−εθ0 − θt + σ)n(1 + εθ∞ + θ1 + σ)n(−εθ∞ − θ1 + σ)n
(2σ)2n±1(1± 2σ)2n±1

)±1

(
θ2

0 − (θt ∓ (σ + n))2
) (
θ2
∞ − (θ1 ∓ (σ + n))2

)(θ∞ + θ1 + σ

θ∞ + θ1 − σ

)±1

(−A)±1 (B.3)

where

[A(θ, σ)]±1 ..=
4σ2(1± 2σ)2

[(θ∞ ± σ)2 − θ2
1][(θt ∓ σ)2 − θ2

0]

C±1

C0

. (B.4)

Finally, we define the ratios

C̄n ≡
Cn
C0

=

|n|−1∏
k=0

C(k+1) sgn(n)

Ck sgn(n)

(B.5)
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and, if we use (B.3), we get

C̄n(θ, σ) ..= Cn(θ, sgn(n)σ)A(θ, σ)n, (B.6)

where

Cn(σ) ≡
|n|−1∏
k=0

(∏
ε=±

(1 + εθ0 + θt + σ)k(−εθ0 − θt + σ)k(1 + εθ∞ + θ1 + σ)k(−εθ∞ − θ1 + σ)k
(2σ)2k+1(1 + 2σ)2k+1

)
×

×
(
σ + θ∞ + θ1

σ − θ∞ − θ1

)(
θ2

0 − (θt − σ − k)2
) (
θ2
∞ − (θ1 − σ − k)2

)
. (B.7)

C Analytical and Numerical Checks of Accessory Parameter Ex-

pansion

As discussed in section 4.3, the solution of the condition λ(x) = x gives a series expansion

X(x) = 1 + X1x + X2x
2 . . . for the PVI integration constant s(x) encoded in X(x). We

present analytically the first

X1 = −σ (δ2
σ + (δ1 − δ∞) (δ0 − δx))

δ2
σ

,
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and second order coefficients of this expansion

X2 = σ2 (δ2
σ + (δ1 − δ∞) (δ0 − δx)) 2

2δ4
σ

+

+
σ

8δ4
σ (4δσ + 3) 2

{
δ2

1

[
δ2
σ (4δσ (δσ + 6) + 9) + 3

(
20δ2

σ − 6δσ − 9
)
δ2
x − 6δ2

σ (8δσ + 3) δx
]

+

+ δ2
σ

[
−δ2

σ (26δσ (2δσ + 3) + 27) + (4δσ (δσ + 6) + 9) δ2
x − 6δ2

σδx
]
−

− 6δ2
σδ∞

[
δ2
σ + (8δσ + 3) δ2

x + 2 (4δσ (δσ + 2) + 3) δx
]

+

+ δ2
0

[
6δ1

[(
−20δ2

σ + 6δσ + 9
)
δ∞ − δ2

σ (8δσ + 3)
]
− 6δ2

σ (8δσ + 3) δ∞+

+3
(
20δ2

σ − 6δσ − 9
)
δ2
∞ + 3δ2

1

(
20δ2

σ − 6δσ − 9
)

+ δ2
σ (4δσ (δσ + 6) + 9)

]
+

+ 2δ0

[
6δ1

[
δ∞
[
(8δσ + 3) δ2

σ +
(
20δ2

σ − 6δσ − 9
)
δx
]

+ δ2
σ

(
−4δ2

σ + 8δσ (δx − 1) + 3 (δx − 1)
)]
−

− 3δ2
∞
(
(8δσ + 3) δ2

σ +
(
20δ2

σ − 6δσ − 9
)
δx
)

+ 2δ2
σδ∞ (4δσ (5δσ + 6) + 3 (8δσ + 3) δx + 9)−

−3δ2
1

(
(8δσ + 3) δ2

σ +
(
20δ2

σ − 6δσ − 9
)
δx
)

+ δ2
σ

(
−3δ2

σ − (4δσ (δσ + 6) + 9) δx
)]

+

+ 2δ1

(
− (4δσ (δσ + 6) + 9) δ2

σδ∞ − 3δ4
σ + 2δ2

σδx (4δσ (5δσ + 6δ∞ + 6) + 9 (δ∞ + 1)) +

+3δ2
x

((
−20δ2

σ + 6δσ + 9
)
δ∞ − δ2

σ (8δσ + 3)
))

+

+δ2
∞
(
+
(
δ2
σ (4δσ (δσ + 6) + 9) + 3

(
20δ2

σ − 6δσ − 9
)
δ2
x − 6δ2

σ (8δσ + 3) δx
))}

.

Plugging back the X(x) series into the logarithm of the τ -function (4.37), following the

procedure of section 4.4, we get the series expansion of the accessory parameter

Hx =
δ0 + δx − δσ

x
+

(δ0 − δσ − δx)(δσ + δ1 − δ∞)

2δσ
+
∑
n=1

Hnx
n. (C.1)

We present here the next two terms in (C.1)

H1 = − x

8δ3
σ (4δσ + 3)

{
δ2

0

(
δ2
σ (3− 6δ∞) + 5δσδ

2
∞ − 2δ1

(
5δσδ∞ + 3δ2

σ − 3δ∞
)

+ δ3
σ

+ δ2
1 (5δσ − 3)− 3δ2

∞
)
− 2δ0

(
2δ1

(
3δ3
σ − 3δ2

σ (δ∞ + δx − 1)− 5δσδ∞δx + 3δ∞δx
)

+(δσ−δ∞)
(
δ2
σ (7δσ−3δ∞+6)+δx

(
δσ (3−5δ∞)+δ2

σ +3δ∞
))

+δ2
1

(
3δ2
σ +(5δσ−3) δx

))
+ (δσ − δ∞)

(
δ2
σ

(
−δσ (δ∞ − 9) + 13δ2

σ − 3δ∞
)

+ δ2
x

(
δσ (3− 5δ∞) + δ2

σ + 3δ∞
)

+ 6δ2
σδx (3δσ + δ∞ + 2)

)
− 2δ1

(
δ2
σ

(
δσ (δ∞− 6)− 9δ2

σ + 3δ∞
)

+ δ2
x

(
5δσδ∞+ 3δ2

σ − 3δ∞
)
− 2δ2

σδx (5δσ + 3δ∞+ 3)
)

+ δ2
1

(
δ2
σ (δσ + 3) + (5δσ − 3) δ2

x − 6δ2
σδx
)}
,
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H2 =
1

16δ5
σ (4δ2

σ + 11δσ + 6)

((
9δ2
σ−19δσ+6

)
δ3

1 +
(
−14δ3

σ−3 (9δ∞−4) δ2
σ+57δ∞δσ−18δ∞

)
δ2

1

+
(
5δ4
σ + 7δ3

σ + 3
(
9δ2
∞ − 2

)
δ2
σ − 57δ2

∞δσ + 18δ2
∞
)
δ1

− δ∞
(
5δ4
σ + (7− 14δ∞) δ3

σ + 3
(
3δ2
∞ + 4δ∞ − 2

)
δ2
σ − 19δ2

∞δσ + 6δ2
∞
))
δ3

0

+
((

2 (6− 7δσ) δ2
σ − 3δx

(
9δ2
σ − 19δσ + 6

))
δ3

1

+
(
5δ4
σ+21 (2δ∞+2δx−1) δ3

σ+9 (−4δ∞+(9δ∞−4) δx+2) δ2
σ−171δxδ∞δσ+54δ∞δx

)
δ2

1

− 3
(
δx
(
5δ4
σ + 7δ3

σ + 3
(
9δ2
∞ − 2

)
δ2
σ − 57δ2

∞δσ + 18δ2
∞
)

− 2δ2
σ

(
2δ3
σ + (5δ∞ + 4) δ2

σ − 7 (δ∞ − 1) δ∞δσ + 6 (δ∞ − 1) δ∞
))
δ1

− (δσ − δ∞)
(
3δ5
σ − 3 (7δ∞ − 5) δ4

σ +
(
14δ2
∞ − 3 (5δx + 11) δ∞ + 18

)
δ3
σ

+ 3δ∞ (−4δ∞ + (9δ∞ − 7) δx + 6) δ2
σ + 3δ∞ (6− 19δ∞) δxδσ + 18δ2

∞δx
))
δ2

0

+
((

3
(
9δ2
σ − 19δσ + 6

)
δ2
x + δ2

σ

(
5δ2
σ + 7δσ − 6

))
δ3

1

− 3
((

14δ3
σ + 3 (9δ∞ − 4) δ2

σ − 57δ∞δσ + 18δ∞
)
δ2
x − 2δ2

σ

(
5δ2
σ + 7δσ − 6

)
δx

−δ2
σ (δσ+2)

(
4δ2
σ−5δ∞δσ+3δ∞

))
δ2

1 +3
((

5δ4
σ+7δ3

σ+3
(
9δ2
∞−2

)
δ2
σ−57δ2

∞δσ+18δ2
∞
)
δ2
x

−4
(
3δ2
σ+5δ∞δσ−3δ∞

)
δ2
σ (δσ+2) δx+

(
7δ3
σ+(9−12δ∞) δ2

σ+5δ2
∞δσ−3δ2

∞
)
δ2
σ (δσ+2)

)
δ1

+ (δσ − δ∞)
(
3δ∞

(
−5δ3

σ + (9δ∞ − 7) δ2
σ + (6− 19δ∞) δσ + 6δ∞

)
δ2
x

+ 6
(
δ2
σ + (3− 5δ∞) δσ + 3δ∞

)
δ2
σ (δσ + 2) δx

+
(
26δ3

σ + (24− 19δ∞) δ2
σ + δ∞ (5δ∞ − 3) δσ − 3δ2

∞
)
δ2
σ (δσ + 2)

))
δ0

− δ1

(
2
(
19δ2

σ − 3 (δ∞ − 4) δσ − 9δ∞
)

(δσ + 2) δ4
σ

− 6δ2
x

(
4δ3
σ + (5δ∞ + 8) δ2

σ + 7δ∞ (δ∞ + 1) δσ − 6δ∞ (δ∞ + 1)
)
δ2
σ

+ 3
(
15δ3

σ + 3 (4δ∞ + 3) δ2
σ + 5δ2

∞δσ − 3δ2
∞
)
δx (δσ + 2) δ2

σ

+
(
5δ4
σ + 7δ3

σ + 3
(
9δ2
∞ − 2

)
δ2
σ − 57δ2

∞δσ + 18δ2
∞
)
δ3
x

)
− (δσ − δ∞)

((
23δ2

σ − 3 (δ∞ − 5) δσ − 9δ∞
)

(δσ + 2) δ4
σ

+
(
3δ3
σ + (15− 9δ∞) δ2

σ +
(
−14δ2

∞ − 9δ∞ + 18
)
δσ + 6δ∞ (2δ∞ + 3)

)
δ2
xδ

2
σ

+
(
38δ3

σ + (17δ∞ + 24) δ2
σ + δ∞ (5δ∞ − 3) δσ − 3δ2

∞
)
δx (δσ + 2) δ2

σ

+ δ∞
(
−5δ3

σ + (9δ∞ − 7) δ2
σ + (6− 19δ∞) δσ + 6δ∞

)
δ3
x

)
+ δ2

1

(
3
(
δ2
σ + 5δσ + 6

)
δ3
σ − 3δx (δσ + 2)

(
7δ2
σ + (5δ∞ − 3) δσ − 3δ∞

)
δσ

+
(
14δ3

σ + 3 (9δ∞ − 4) δ2
σ − 57δ∞δσ + 18δ∞

)
δ2
x

)
(δx − δσ)

− δ3
1δx
((

9δ2
σ − 19δσ + 6

)
δ2
x − 2δ2

σ (7δσ − 6) δx + δ2
σ

(
5δ2
σ + 7δσ − 6

))
.

We tested our results numerically from order x3 and only up to order x5, as it is time

consuming to simplify the expressions in terms of δ’s. The table 1 shows the values of the

coefficients Hn if we substitute the θ’s by numbers in our algorithm from the beginning. The

numbers presented here all match the classical conformal block calculated via the inverse

Gram matrix CFT approach, also substituting numbers from the beginning.

Notice that we tested some special transformations of conformal blocks by permutations

of the values of the δ’s, in the rows 3 to 8 of the table. In the rows 3 and 4, and also 7 and 8, we
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δσ δ0 δ1 δx δ∞ H3 H4 H5

1 1 1 1 1 −1.07867 −1.14311 −1.18935

1 0.4 0.4 0.4 0.4 −0.492431 −0.491792 −0.491431

2 1 1 2 2 −1.2865 −1.30949 −1.31137

2 2 2 1 1 −1.2865 −1.30949 −1.31137

0.5 0.1 0.2 0.3 0.4 −0.201122 −0.20042 −0.199985

0.5 0.2 0.1 0.4 0.3 −0.201122 −0.20042 −0.199985

0.4 2 1 2.1 1.2 −1.7517 −1.73116 −1.65458

0.4 2.1 1.2 2 1 −1.8517 −1.83116 −1.75458

Table 1. Numerical coefficients from order x3 to order x5 for different values of δ’s.

permute δ0 ↔ δx, δ1 ↔ δ∞. The conformal block is not invariant under this transformation,

as we can see in rows 7 and 8. However, in the lines 3 and 4, the weights remain the same and

this becomes a symmetry. Finally, in rows 5 and 6, we test the symmetry δ0 ↔ δ1, δx ↔ δ∞.
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