371 research outputs found
Robotic Surgery in Gynecologic Field
Operative laparoscopy was initially developed in the field of gynecology earlier on and the advent of laparoscopic surgery led to advances in general surgery as well. In the last few years, a number of articles have been published on the performance of surgical procedures using the robot-assisted laparoscopy. The shortcomings of conventional laparoscopy have led to the development of robotic surgical system and future of telerobotic surgery is not far away, enabling a surgeon to operate at a distance from the operating table. The complete loss of tactile sensation is often quoted as a big disadvantage of working with robotic systems. Although the first generation da Vinci robotic surgical system provides improved imaging and instrumentation, the absence of tactile feedback and the high cost of the technology remain as limitations. New generations of the robotic surgical systems have been developed, allowing visualization of preoperative imaging during the operation. Though the introduction of robotics is very recent, the potential for robotics in several specialties is significant. However, the benefit to patients must be carefully evaluated and proven before this technology can become widely accepted in the gynecologic surgery
EDMs vs. CPV in B_{s,d} mixing in two Higgs doublet models with MFV
We analyze the correlations between electric dipole moments (EDMs) of the
neutron and heavy atoms and CP violation in B_{s,d} mixing in two Higgs doublet
models respecting the Minimal Flavour Violation hypothesis, with flavour-blind
CP-violating (CPV) phases. In particular, we consider the case of flavour-blind
CPV phases from i) the Yukawa interactions and ii) the Higgs potential. We show
that in both cases the upper bounds on the above EDMs do not forbid sizable
non-standard CPV effects in B_s mixing. However, if a large CPV phase in B_s
mixing will be confirmed, this will imply EDMs very close to their present
experimental bounds, within the reach of the next generation of experiments, as
well as BR(B_{s,d}-> mu^+ mu^-) typically largely enhanced over its SM
expectation. The two flavour-blind CPV mechanisms can be distinguished through
the correlation between S_psi K_S and S_psi phi that is strikingly different if
only one of them is relevant. Which of these two CPV mechanisms dominates
depends on the precise values of S_psi phi and S_psi K_S, as well as on the CKM
phase (as determined by tree-level processes). Current data seems to show a
mild preference for a hybrid scenario where both these mechanisms are at work.Comment: 9 pages, 8 figures. V2: minor modifications, few typos corrected, few
refs adde
Constraining Supersymmetry
We review constraints on the minimal supersymmetric extension of the Standard
Model (MSSM) coming from direct searches at accelerators such as LEP, indirect
measurements such as b -> s gamma decay and the anomalous magnetic moment of
the muon. The recently corrected sign of pole light-by-light scattering
contributions to the latter is taken into account. We combine these constraints
with those due to the cosmological density of stable supersymmetric relic
particles. The possible indications on the supersymmetric mass scale provided
by fine-tuning arguments are reviewed critically. We discuss briefly the
prospects for future accelerator searches for supersymmetry.Comment: 21 LaTeX pages, 9 eps figures, Invited Contribution to the New
Journal of Physics Focus Issue on Supersymmetr
A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease
Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba(-/-) mice and the control littermate (gba(+/+)) by infecting differentiated primary cortical neurons in culture with an EF1 alpha-SV40T lentivirus. Immortalized gba(-/-) neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba(+/+) neurons. This null allele gba(-/-) mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies
Triptolide (TPL) Inhibits Global Transcription by Inducing Proteasome-Dependent Degradation of RNA Polymerase II (Pol II)
Triptolide (TPL), a key biologically active component of the Chinese medicinal herb Tripterygium wilfordii Hook. f., has potent anti-inflammation and anti-cancer activities. Its anti-proliferative and pro-apoptotic effects have been reported to be related to the inhibition of Nuclear Factor κB (NF-κB) and Nuclear Factor of Activated T-cells (NFAT) mediated transcription and suppression of HSP70 expression. The direct targets and precise mechanisms that are responsible for the gene expression inhibition, however, remain unknown. Here, we report that TPL inhibits global gene transcription by inducing proteasome-dependent degradation of the largest subunit of RNA polymerase II (Rpb1) in cancer cells. In the presence of proteosome inhibitor MG132, TPL treatment causes hyperphosphorylation of Rpb1 by activation of upstream protein kinases such as Positive Transcription Elongation Factor b (P-TEFb) in a time and dose dependent manner. Also, we observe that short time incubation of TPL with cancer cells induces DNA damage. In conclusion, we propose a new mechanism of how TPL works in killing cancer. TPL inhibits global transcription in cancer cells by induction of phosphorylation and subsequent proteasome-dependent degradation of Rpb1 resulting in global gene transcription, which may explain the high potency of TPL in killing cancer
Physics at a 100 TeV pp collider: beyond the Standard Model phenomena
This report summarises the physics opportunities in the search and study of
physics beyond the Standard Model at a 100 TeV pp collider.Comment: 196 pages, 114 figures. Chapter 3 of the "Physics at the FCC-hh"
Repor
Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017
Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very
high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio
fluxes. Our aim is to understand the radiative processes by investigating the
observed emission and its production mechanism using the High Energy
Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent
observations of the BL Lac source RGB J0152+017 made in late October and
November 2007 with the H.E.S.S. array consisting of four imaging atmospheric
Cherenkov telescopes. Contemporaneous observations were made in X-rays by the
Swift and RXTE satellites, in the optical band with the ATOM telescope, and in
the radio band with the Nancay Radio Telescope. Results: A signal of 173
gamma-ray photons corresponding to a statistical significance of 6.6 sigma was
found in the data. The energy spectrum of the source can be described by a
powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux
above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source
spectral energy distribution (SED) can be described using a two-component
non-thermal synchrotron self-Compton (SSC) leptonic model, except in the
optical band, which is dominated by a thermal host galaxy component. The
parameters that are found are very close to those found in similar SSC studies
in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE
gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from
the SED in Swift data, allows clearly classification it as a
high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures
H.E.S.S. observations of gamma-ray bursts in 2003-2007
Very-high-energy (VHE; >~100 GeV) gamma-rays are expected from gamma-ray
bursts (GRBs) in some scenarios. Exploring this photon energy regime is
necessary for understanding the energetics and properties of GRBs. GRBs have
been one of the prime targets for the H.E.S.S. experiment, which makes use of
four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE gamma-rays.
Dedicated observations of 32 GRB positions were made in the years 2003-2007 and
a search for VHE gamma-ray counterparts of these GRBs was made. Depending on
the visibility and observing conditions, the observations mostly start minutes
to hours after the burst and typically last two hours. Results from
observations of 22 GRB positions are presented and evidence of a VHE signal was
found neither in observations of any individual GRBs, nor from stacking data
from subsets of GRBs with higher expected VHE flux according to a
model-independent ranking scheme. Upper limits for the VHE gamma-ray flux from
the GRB positions were derived. For those GRBs with measured redshifts,
differential upper limits at the energy threshold after correcting for
absorption due to extra-galactic background light are also presented.Comment: 9 pages, 4 tables, 3 figure
Physics of leptoquarks in precision experiments and at particle colliders
We present a comprehensive review of physics effects generated by leptoquarks
(LQs), i.e., hypothetical particles that can turn quarks into leptons and vice
versa, of either scalar or vector nature. These considerations include
discussion of possible completions of the Standard Model that contain LQ
fields. The main focus of the review is on those LQ scenarios that are not
problematic with regard to proton stability. We accordingly concentrate on the
phenomenology of light leptoquarks that is relevant for precision experiments
and particle colliders. Important constraints on LQ interactions with matter
are derived from precision low-energy observables such as electric dipole
moments, (g-2) of charged leptons, atomic parity violation, neutral meson
mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of
indirect constraints on the strength of LQ interactions with the quarks and
leptons to make statements that are as model independent as possible. We
address complementary constraints that originate from electroweak precision
measurements, top, and Higgs physics. The Higgs physics analysis we present
covers not only the most recent but also expected results from the Large Hadron
Collider (LHC). We finally discuss direct LQ searches. Current experimental
situation is summarized and self-consistency of assumptions that go into
existing accelerator-based searches is discussed. A progress in making
next-to-leading order predictions for both pair and single LQ productions at
colliders is also outlined.Comment: 136 pages, 22 figures, typographical errors fixed, the Physics
Reports versio
Flavour-changing top decays in the aligned two-Higgs-doublet model
We perform a complete one-loop computation of the two-body flavour-changing top decays t --> ch and t --> cV (V = gamma, Z), within the aligned two-Higgs-doublet model. We evaluate the impact of the model parameters on the associated branching ratios, taking into account constraints from flavour data and measurements of the Higgs properties. Assuming that the 125 GeV Higgs corresponds to the lightest CP-even scalar of the CP-conserving aligned two-Higgs-doublet model, we find that the rates for such flavour-changing top decays lie below the expected sensitivity of the future high-luminosity phase of the LHC. Measurements of the Higgs signal strength in the di-photon channel are found to play an important role in limiting the size of the t --> ch decay rate when the charged scalar of the model is light
- …