29 research outputs found

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Relationship between Metallophilic Interactions and Luminescent Properties in Pt(II) Complexes: TD-DFT Guide for the Molecular Design of Light-Responsive Materials

    No full text
    DFT/TD-DFT investigation has been performed on pyridyl triazolatoplatinum­(II) complexes with a systematic variation of the donor/acceptor properties of the ligand in order to illuminate its effect on the metallophilic intermolecular interaction in ground and excited states. The π-electronic properties of the pyridyl triazolate ligand were modified by the pyridine substituent: −N­(CH<sub>3</sub>)<sub>2</sub>, −H, −CHO, or −CHC­(CN)<sub>2</sub>. The simulations reveal that the donor/acceptor strength of the substituent has a strong impact on the metallophilic interaction in the excited state and affects the emission properties at the supramolecular level. The theoretically derived structure–property relationships are corroborated by experimental data. Finally, it is proposed that the modification of the π-electronic character of the substituent (ligand field) can be applied in the molecular design of smart luminescent materials with light-driven metallophilic interactions

    Molecular Design of pH-Sensitive Ru(II)–Polypyridyl Luminophores

    Get PDF
    Three new [Ru(bpy)2X]+ complex ions, where bpy represents bipyridyl ligand and X denotes pyridyl diazolate or pyrazinyl diazolate coordination site, have been computationally designed and synthesized as pH-sensitive molecules. The choice of pyridyl and pyrazinyl moieties allows for the nitrogen content to vary, whereas the influence of the protonation site is quantified by using 1,2-diazolate and 1,3-diazolate derivatives. The absorption and emission properties of the deprotonated and protonated complex ions were characterized by UV–vis and photoluminescence spectroscopy as well as by time-dependent density functional theory. Protonation causes (1) a strong blue shift in the lowest energy 3MLCT → S0 emission wavelengths, (2) a substantial increase in the emission intensity, and (3) a change in the character of the corresponding 3MLCT emitting states. The blue shift in the emission wavelength becomes less pronounced when the nitrogen content in the X-ligand increases and when going from 1,2- to 1,3-diazolate derivatives. The contrast in the emission intensity of the protonated/deprotonated forms is the highest for the complex ion, containing a 2-pyridyl derivative of the 1,2-diazolate. The complex ions are suggested as potential pH-responsive materials based on change in the color and intensity of the emitted radiation. The broad impact of the research demonstrates that the modification of the nitrogen content and position within the protonable ligands is an effective approach for modulation of the pH-optosensing properties of Ru–polypyridyl complexes

    Engineering Tunable Single and Dual Optical Emission from Ru(II)–Polypyridyl Complexes through Excited State Design

    No full text
    Excited state design is an efficient approach toward new applications in molecular electronics spanning solar cells, artificial photosynthesis and biomedical diagnostics. Ruthenium­(II)–polypiridyl based complexes are an example of molecular building blocks with tunable single and dual wavelength emission that can be controlled by excited state engineering via selective ligand modification. Here we investigate three new heteroleptic [Ru­(bpy)<sub>2</sub>X]<sup>+</sup> complex ions, where X represents pyridinyl or pyrazinyl derivatives of diazolates, providing tunable emission in the visible and infrared region. The dual emission is shown to arise from the presence of two excited states consisting of a triplet metal-to-ligand charge transfer state localized on a bipyridine ligand, <sup>3</sup>MLCT (bpy), and a state that either is entirely localized on the X ligand or is partially delocalized also spanning part of the bipyridine ligands, <sup>3</sup>MLCT­(X). By a suitable choice of the X ligand, emission from <sup>3</sup>MLCT­(bpy) and <sup>3</sup>MLCT (X) states can be rationally varied between 743 and 865 nm and from 555 to 679 nm, respectively. An increase in the nitrogen content of the six-membered ring of the X ligand results in a blue shift of the <sup>3</sup>MLCT­(bpy) emission but a red shift for the <sup>3</sup>MLCT (X) emission. The wavelength difference between <sup>3</sup>MLCT­(bpy) and <sup>3</sup>MLCT (X) emissions can be tuned from 84 to 310 nm and is proportional to the difference in LUMO energies (reduction potentials) of the isolated ligands. Our study provides key information toward new routes for the design of optically active dual wavelength molecular emitters

    Egg- or cell culture-derived hemagglutinin mutations impair virus stability and antigen content of inactivated influenza vaccines

    No full text
    Egg-derived viruses are the only available seed material for influenza vaccine production. Vaccine manufacturing is done in embryonated chicken eggs, MDCK or Vero cells. In order to contribute to efficient production of influenza vaccines, we investigate whether the quality of inactivated vaccines is influenced by the propagation substrate. We demonstrate that H3N2 egg-derived seed viruses (A/Brisbane/10/07, IVR147, and A/Uruguay/716/07) triggered the hemagglutinin (HA) conformational change under less acidic conditions (0.2-0.6 pH units) than antigenically similar primary isolates. This phenotype was associated with HA1 (A138S, L194P) and HA2 (D160N) substitutions, and strongly related to decreased virus stability towards acidic pH and elevated temperature. The subsequent propagation of H3N2 and H1N1 egg-derived seed viruses in MDCK and Vero cells induced HA2 N50K (H1N1) and D160E (H3N2) mutations, improving virus growth in cell culture but further impairing virus stability. The prevention of the loss or recovery of stability was possible by cultivation at acidified conditions. Viruses carrying less stable HAs are more sensitive for HA conformational change during concentration, purification and storage. This results in decreased detectable HA antigen content - the main potency marker for inactivated influenza vaccines. Thus, virus stability can be a useful marker for predicting the manufacturing scope of seed viruses

    Optimal layout of ellipses and its application for additive manufacturing

    No full text
    The paper studies a layout problem of variable number of ellipses with variable sizes placed into an arbitrary disconnected polygonal domain with maximum packing factor. The ellipses can be continuously translated and rotated. Restrictions on the dimensions of the ellipses are taken into account. Tools for the mathematical modelling of placement constraints (distance constraints between ellipses and containment of ellipses into a polygonal domain) using the phi-function technique are introduced. The tools make it possible to formulate the layout problem in the form of MIP model that is equivalent to a sequence of nonlinear programming subproblems. We develop a new solution algorithm that involves the feasible starting point algorithm and optimisation procedure to search for efficient locally optimal solutions of the layout problem. This algorithm can be used in the design of parts for «support-free» additive manufacturing, taking into account the conditions for its static/ dynamic strength. Results of the algorithm implementation for a topologically optimised flat part with the analysis of a stress state are provided
    corecore