23 research outputs found

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape

    Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17

    Get PDF
    Background: Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods: We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings: Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40·0% (95% uncertainty interval [UI] 39·4–40·7) to 50·3% (50·0–50·5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46·3% (95% UI 46·1–46·5) in 2017, compared with 28·7% (28·5–29·0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88·6% (95% UI 87·2–89·7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664–711) of the 1830 (1797–1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76·1% (95% UI 71·6–80·7) of countries from 2000 to 2017, and in 53·9% (50·6–59·6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation: Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    Water ice nucleation characteristics of JSC Mars-1 regolith simulant under simulated Martian atmospheric conditions

    No full text
    Water ice clouds in the Martian atmosphere are governed by parameters such as number density and particle size distribution that in turn affect how they influence the climate. With some of the underlying properties of cloud formation well known only for Earth, extrapolations to Mars are potentially misleading. We report here continued laboratory experiments to identify critical onset conditions for water ice formation under Martian cloud forming temperatures and water partial pressures (155-182 K, 7.6 × 10-5 to 7.7 × 10-3 Pa H2O). By observing the 3 μm infrared band to monitor nucleation and growth, we observe significant temperature dependence in the nucleation of ice on JSC Mars-1 regolith simulant, with critical saturation ratios, Scrit, as high as 3.8 at 155 K. At temperatures below ∼180 K, ice nucleation on JSC Mars-1 requires significant supersaturation, potentially impacting the Martian hydrological cycle. Copyright © 2011 by the American Geophysical Union

    A multisensor investigation of rime splintering in tropical maritime cumuli

    No full text
    Three flights from the Ice in Clouds Experiment-Tropical (ICE-T) field campaign examined the onset of ice near the ascending cloud tops of tropical maritime cumuli as they cooled from 0� to -14�C. Careful quantitative analysis of ice number concentrations included manual scrutiny of particle images and corrections for possible particle-shattering artifacts. The novel use of the Wyoming Cloud Radar documented the stage of cloud development and tops relative to the aircraft sampling, complemented the manual estimates of graupel concentrations, and provided new clear evidence of graupel movement through the rime-splintering zone. Measurements of ice-nucleating particles (INPs) provided an estimate of primary initiated ice. The data portray a dynamically complex picture of hydrometeor transport contributing to, and likely resulting from, the rime-splintering process. Hundreds per liter of supercooled raindrops ascended within the updrafts as the cloud tops reached 0�C and contributed in part to the 0.1 L-1 graupel detected soon after the cloud tops cooled to -5�C. Rime splintering could thus be initiated upon first ascent of the cloud top through that zone and arguably contributed to the 1 L-1 or more graupel observed above it. Graupel ascending/descending into, or balanced within, the rime-splintering zone were found. In wider, less isolated clouds with dying updrafts and tops near -14�C, ice particle concentrations sometimes reached 100 L-1. Future 3D numerical modeling will be required to evaluate if rime splintering alone can explain the difference of three to four orders of magnitude in the observed INPs and the graupel observed at -5�C and colder

    Performing Security Absent the State: Encounters with a Failed Asylum Seeker in the UK

    No full text
    Drawing on feminist research methodologies and theory, this article re-centers critical security studies to focus on a migrant seeking an alternative form of security after his application for asylum was denied by the state. The two main objectives of this article are; first, to resituate a failed asylum seeker, Qasim, as an agent of international security as understood through his practice of seeking and obtaining security; and, second, to demonstrate a revised performative conceptualization of security through understanding the failed asylum seeker as practicing an embodied theorization of security. The encounter with Qasim shows alternative means of seeking security, which illustrates agency on the part of the migrant that exists actively outside of the state. This contests the positioning of migrants as passive victims and recognizes a way of being in the world that by necessity cannot rely on a state-based identity. Ethnographic methods, including participant observation and a narrative interview with Qasim, elucidate his practice of security and allow for the development of a theoretical conceptualization of security that remains true to a failed asylum seeker’s practice in the UK

    Validation of a humanized anti-EGFR variant III chimeric antigen receptor for a Phase I trial of CART-EGFRvIII in glioblastoma

    No full text
    Chimeric antigen receptors (CARs) are synthetic molecules designed to re-direct T cells to specific antigens; CAR-modified T cells can mediate long-term durable remissions in B cell malignancies, but expanding this platform to solid tumors requires the discovery of novel surface targets with limited expression in normal tissues. The variant III mutation of the epidermal growth factor receptor (EGFR variant III) results from an in-frame deletion of a portion of the extracellular domain. In glioblastoma, the EGFRvIII mutation is oncogenic, portends a poor prognosis, and is thought to be enriched in glioblastoma stem cells. However, because the neoepitope of EGFR variant III is based on a small peptide sequence, an antibody or single-chain variable fragment (scFv) directed to this epitope must be rigorously tested to confirm lack of cross-reactivity to the ubiquitously expressed wild-type EGFR. We chose a vector backbone encoding a second generation CAR based on efficacy of a murine scFv-based CAR in a xenograft model of glioblastoma. Next, we generated a panel of humanized scFv’s and tested their specificity and function as soluble proteins and in the form of CAR-transduced T cells; a low affinity scFv was chosen based on its specificity for EGFR variant III over wild type EGFR. The lead candidate scFv was tested in vitro for its ability to direct CAR-transduced T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. We further evaluated the specificity of the lead candidate CAR in vitro against EGFR expressing keratinocytes and in vivo in immunodeficient mice grafted with normal human skin; a cetuximab-based CAR served as a positive control. EGFRvIII-directed CAR-T cells were also able to control tumor growth in xenogeneic subcutaneous and orthotopic models of human EGFR variant III+ glioblastoma. We have designed a phase I clinical study of CAR T cells transduced with humanized scFv directed to EGFR variant III in patients with either residual or recurrent glioblastoma (NCT02209376)

    Wastewater monitoring can anchor global disease surveillance systems

    No full text
    ILRI staff Ekta Patel is a member of the Global Wastewater Action Group.To inform the development of global wastewater monitoring systems, we surveyed programmes in 43 countries. Most programmes monitored predominantly urban populations. In high-income countries (HICs), composite sampling at centralised treatment plants was most common, whereas grab sampling from surface waters, open drains, and pit latrines was more typical in low-income and middle-income countries (LMICs). Almost all programmes analysed samples in-country, with an average processing time of 2·3 days in HICs and 4·5 days in LMICs. Whereas 59% of HICs regularly monitored wastewater for SARS-CoV-2 variants, only 13% of LMICs did so. Most programmes share their wastewater data internally, with partnering organisations, but not publicly. Our findings show the richness of the existing wastewater monitoring ecosystem. With additional leadership, funding, and implementation frameworks, thousands of individual wastewater initiatives can coalesce into an integrated, sustainable network for disease surveillance—one that minimises the risk of overlooking future global health threats
    corecore