94 research outputs found

    Memantine Improves Attentional Processes in Fragile X-Associated Tremor/Ataxia Syndrome: Electrophysiological Evidence from a Randomized Controlled Trial.

    Get PDF
    Progressive cognitive deficits are common in patients with fragile X-associated tremor/ataxia syndrome (FXTAS), with no targeted treatment yet established. In this substudy of the first randomized controlled trial for FXTAS, we examined the effects of NMDA antagonist memantine on attention and working memory. Data were analyzed for patients (24 in each arm) who completed both the primary memantine trial and two EEG recordings (at baseline and follow-up) using an auditory "oddball" task. Results demonstrated significantly improved attention/working memory performance after one year only for the memantine group. The event-related potential P2 amplitude elicited by non-targets was significantly enhanced in the treated group, indicating memantine-associated improvement in attentional processes at the stimulus identification/discrimination level. P2 amplitude increase was positively correlated with improvement on the behavioral measure of attention/working memory during target detection. Analysis also revealed that memantine treatment normalized the P2 habituation effect at the follow-up visit. These findings indicate that memantine may benefit attentional processes that represent fundamental components of executive function/dysfunction, thought to comprise the core cognitive deficit in FXTAS. The results provide evidence of target engagement of memantine, as well as therapeutically relevant information that could further the development of specific cognitive or disease-modifying therapies for FXTAS

    Diagnosis of Dementia with Lewy Bodies: Fluctuations, Biomarkers, and Beyond

    Get PDF
    Dementia with Lewy bodies (DLB), the second most common cause of dementia, remains a difficult condition to accurately diagnose and manage. Variable involvement of motor and cognitive functions, plus psychiatric and behavioral symptoms, contributes to the difficulty in managing DLB. Additionally, DLB can cause severe sleep disruption through REM sleep behavior disorder, autonomic symptoms, disruptions of olfaction/taste and mood, hallucinations, and more. In this chapter, advances and remaining challenges in the diagnosis of DLB are discussed, including a review of the current consensus criteria for DLB. The spectrum of disorders with Lewy bodies (LBs) are described including their wide-range of clinical presentations and overlap with Alzheimer’s disease (AD) and Parkinson’s disease with and without dementia. Particular consideration is given to advancements in quantification of cognitive fluctuations through improved clinical instruments, EEG, and other advanced biomarkers. Detection of DLB has improved, but establishing the “primary” pathology in cases with concomitant LB andd AD remains difficult. Likelihood of a clinical DLB syndrome is thought to be a function of distribution of LBs and severity of AD-type pathology. Further work is needed to better understand LB disease subtypes and the underlying pathophysiological mechanisms to allow for more targeted and comprehensive therapies

    The cognitive neuropsychological phenotype of carriers of the FMR1 premutation

    Get PDF
    The fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder affecting a subset of carriers of the FMR1 (fragile X mental retardation 1) premutation. Penetrance and expression appear to be significantly higher in males than females. Although the most obvious aspect of the phenotype is the movement disorder that gives FXTAS its name, the disorder is also accompanied by progressive cognitive impairment. In this review, we address the cognitive neuropsychological and neurophysiological phenotype for males and females with FXTAS, and for male and female unaffected carriers. Despite differences in penetrance and expression, the cognitive features of the disorder appear similar for both genders, with impairment of executive functioning, working memory, and information processing the most prominent. Deficits in these functional systems may be largely responsible for impairment on other measures, including tests of general intelligence and declarative learning. FXTAS is to a large extent a white matter disease, and the cognitive phenotypes observed are consistent with what some have described as white matter dementia, in contrast to the impaired cortical functioning more characteristic of Alzheimer's disease and related disorders. Although some degree of impaired executive functioning appears to be ubiquitous among persons with FXTAS, the data suggest that only a subset of unaffected carriers of the premutation - both female and male - demonstrate such deficits, which typically are mild. The best-studied phenotype is that of males with FXTAS. The manifestations of cognitive impairment among asymptomatic male carriers, and among women with and without FXTAS, are less well understood, but have come under increased scrutiny

    What Electrophysiology Tells Us About Alzheimer’s Disease::A Window into the Synchronization and Connectivity of Brain Neurons

    Get PDF
    Electrophysiology provides a real-time readout of neural functions and network capability in different brain states, on temporal (fractions of milliseconds) and spatial (micro, meso, and macro) scales unmet by other methodologies. However, current international guidelines do not endorse the use of electroencephalographic (EEG)/magnetoencephalographic (MEG) biomarkers in clinical trials performed in patients with Alzheimer’s disease (AD), despite a surge in recent validated evidence. This Position Paper of the ISTAART Electrophysiology Professional Interest Area endorses consolidated and translational electrophysiological techniques applied to both experimental animal models of AD and patients, to probe the effects of AD neuropathology (i.e., brain amyloidosis, tauopathy, and neurodegeneration) on neurophysiological mechanisms underpinning neural excitation/inhibition and neurotransmission as well as brain network dynamics, synchronization, and functional connectivity reflecting thalamocortical and cortico-cortical residual capacity. Converging evidence shows relationships between abnormalities in EEG/MEG markers and cognitive deficits in groups of AD patients at different disease stages. The supporting evidence for the application of electrophysiology in AD clinical research as well as drug discovery pathways warrants an international initiative to include the use of EEG/MEG biomarkers in the main multicentric projects planned in AD patients, to produce conclusive findings challenging the present regulatory requirements and guidelines for AD studies

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore