478 research outputs found
Constraints on accelerating universe using ESSENCE and Gold supernovae data combined with other cosmological probes
We use recently observed data: the 192 ESSENCE type Ia supernovae (SNe Ia),
the 182 Gold SNe Ia, the 3-year WMAP, the SDSS baryon acoustic peak, the X-ray
gas mass fraction in clusters and the observational data to constrain
models of the accelerating universe. Combining the 192 ESSENCE data with the
observational data to constrain a parameterized deceleration parameter,
we obtain the best fit values of transition redshift and current deceleration
parameter , .
Furthermore, using CDM model and two model-independent equation of
state of dark energy, we find that the combined constraint from the 192 ESSENCE
data and other four cosmological observations gives smaller values of
and , but a larger value of than the combined
constraint from the 182 Gold data with other four observations. Finally,
according to the Akaike information criterion it is shown that the recently
observed data equally supports three dark energy models: CDM,
and .Comment: 18 pages, 8 figure
Is the evidence for dark energy secure?
Several kinds of astronomical observations, interpreted in the framework of
the standard Friedmann-Robertson-Walker cosmology, have indicated that our
universe is dominated by a Cosmological Constant. The dimming of distant Type
Ia supernovae suggests that the expansion rate is accelerating, as if driven by
vacuum energy, and this has been indirectly substantiated through studies of
angular anisotropies in the cosmic microwave background (CMB) and of spatial
correlations in the large-scale structure (LSS) of galaxies. However there is
no compelling direct evidence yet for (the dynamical effects of) dark energy.
The precision CMB data can be equally well fitted without dark energy if the
spectrum of primordial density fluctuations is not quite scale-free and if the
Hubble constant is lower globally than its locally measured value. The LSS data
can also be satisfactorily fitted if there is a small component of hot dark
matter, as would be provided by neutrinos of mass 0.5 eV. Although such an
Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the
position of the `baryon acoustic oscillation' peak in the autocorrelation
function of galaxies, it may be possible to do so e.g. in an inhomogeneous
Lemaitre-Tolman-Bondi cosmology where we are located in a void which is
expanding faster than the average. Such alternatives may seem contrived but
this must be weighed against our lack of any fundamental understanding of the
inferred tiny energy scale of the dark energy. It may well be an artifact of an
oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General
Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references
reformatted in journal style - text unchange
Processing of aluminum-graphite particulate metal matrix composites by advanced shear technology
Copyright @ 2009 ASM International. This paper was published in Journal of Materials Engineering and Performance 18(9) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting
(MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated.
The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (e) is obtained compared with composites produced by conventional processes.EPSR
Dark Energy and Gravity
I review the problem of dark energy focusing on the cosmological constant as
the candidate and discuss its implications for the nature of gravity. Part 1
briefly overviews the currently popular `concordance cosmology' and summarises
the evidence for dark energy. It also provides the observational and
theoretical arguments in favour of the cosmological constant as the candidate
and emphasises why no other approach really solves the conceptual problems
usually attributed to the cosmological constant. Part 2 describes some of the
approaches to understand the nature of the cosmological constant and attempts
to extract the key ingredients which must be present in any viable solution. I
argue that (i)the cosmological constant problem cannot be satisfactorily solved
until gravitational action is made invariant under the shift of the matter
lagrangian by a constant and (ii) this cannot happen if the metric is the
dynamical variable. Hence the cosmological constant problem essentially has to
do with our (mis)understanding of the nature of gravity. Part 3 discusses an
alternative perspective on gravity in which the action is explicitly invariant
under the above transformation. Extremizing this action leads to an equation
determining the background geometry which gives Einstein's theory at the lowest
order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy,
edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure
Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens
Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to ~50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of ≳3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars’ light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images’ long-term brightness ratio
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Optical Light Curves of Supernovae
Photometry is the most easily acquired information about supernovae. The
light curves constructed from regular imaging provide signatures not only for
the energy input, the radiation escape, the local environment and the
progenitor stars, but also for the intervening dust. They are the main tool for
the use of supernovae as distance indicators through the determination of the
luminosity. The light curve of SN 1987A still is the richest and longest
observed example for a core-collapse supernova. Despite the peculiar nature of
this object, as explosion of a blue supergiant, it displayed all the
characteristics of Type II supernovae. The light curves of Type Ib/c supernovae
are more homogeneous, but still display the signatures of explosions in massive
stars, among them early interaction with their circumstellar material. Wrinkles
in the near-uniform appearance of thermonuclear (Type Ia) supernovae have
emerged during the past decade. Subtle differences have been observed
especially at near-infrared wavelengths. Interestingly, the light curve shapes
appear to correlate with a variety of other characteristics of these
supernovae. The construction of bolometric light curves provides the most
direct link to theoretical predictions and can yield sorely needed constraints
for the models. First steps in this direction have been already made.Comment: To be published in:"Supernovae and Gamma Ray Bursters", Lecture Notes
in Physics (http://link.springer.de/series/lnpp
- …