573 research outputs found

    The path of least resistance: Paying for antibiotics in non-human uses

    Get PDF
    Antibiotic resistance is a critical threat to human and animal health. Despite the importance of antibiotics, regulators continue to allow antibiotics to be used in low-value applications - subtherapeutic dosing in animals, and spraying tobacco plants for blue mold, for example - where the benefits are unlikely to outweigh the costs in terms of increased resistance. We explore the application of a user fee in non-human uses of antibiotics. Such a fee would efficiently deter low value uses while also providing funding to support the development of the urgently needed new antibiotics

    The Interrelationships Between REIT Capital Structure and Investment

    Get PDF
    We investigate whether Real Estate Investment Trust (REIT) managers actively manipulate performance measures in spite of the strict regulation under the REIT regime. We provide empirical evidence that is consistent with this hypothesis. Specifically, manipulation strategies may rely on the opportunistic use of leverage. However, manipulation does not appear to be uniform across REIT sectors and seems to become more common as the level of competition in the underlying property sector increases. We employ a set of commonly used traditional performance measures and a recently developed manipulation-proof measure (MPPM, Goetzmann, Ingersoll, Spiegel, and Welch (2007)) to evaluate the performance of 147 REITs from seven different property sectors over the period 1991-2009. Our findings suggest that the existing REIT regulation may fail to mitigate a substantial agency conflict and that investors can benefit from evaluating return information carefully in order to avoid potentially manipulative funds

    Sedimentation during MIS 3 at the eastern margins of the Glacial Lake Humber basin, England

    Get PDF
    The stratigraphic sequence at North Cave, on the eastern margins of the Lake Humber basin, records the deposition of a fluvioperiglacial fan (LFs 1–4), with early sedimentation (LF1) dating to Marine Isotope Stage (MIS) 3 (optically stimulated luminescence date range 41.8–38.6 ka and 14C dates 41.6–49 ka BP). Three phases of permafrost and ice wedge development during MIS 3 are evident and indicate possible fan abandonment and hence periods of reduced nival runoff. Involution structures dated to 11.1 ka with large boulders and fine‐grained sorted circles in LF4b are interpreted as periglacially cryoturbated littoral deposits with boulders derived from anchor ice, initially deposited at the margins of Lake Humber up to an altitude of 8 m OD during MIS 2. The style and age of fluvioperiglacial fan deposition at North Cave is compatible with several mid‐Devensian sites around Britain characterized by significant nival melt and run‐off from steeply incised valleys in permafrozen cuesta landscapes. This phase of fluvioperiglacial fan aggradation to near or below 0 m OD is recorded around the glacial lakes Humber and Fenland basins and indicates that no glacial lakes existed at that time

    Concentric “microwaves” of Henle's fiber layer: Associated with horizontal folding

    Full text link
    Concentric “microwaves” in Henle's fiber layer are found in a case of extensive horizontal folding in the fundus due to tumor pressure on the globe from behind. In addition to horizontal folding of inner choroid and inner retina between disk and fovea, somewhat irregular vertical folds are found next to the fovea in the inner retinal layers. The concentric waves of Henle's fiber layer are a new observation and they are suspected to be a protective adjustment of the central retina to minimize distortion of the foveola. Konzentrische Mikrowellen in Henle's Faserschicht werden in einem Fall von horizontaler Faeltelung im Augenhintergrund bei Tumordruck von hinten dargestellt. Zusätzlich zu horizontalen Falten der Aderhaut und Netzhaut zwischen Sehnerv und Fovea werden leicht unregelmäßige vertikale Falten der inneren Netzhaut im Foveabereich gefunden. Die konzentrischen Mikrowellen in Henle's Faserschicht sind eine neue Beobachtung und dieselben könnten eine mechanische Anpassung der zentralen Netzhaut zur Vermeidung von Verzerrung der Fovea darstellen.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47370/1/417_2004_Article_BF00407774.pd

    The co-receptor signaling model of HIV-1 pathogenesis in peripheral CD4 T cells

    Get PDF
    HIV-mediated CD4 depletion is the hallmark of AIDS and is the most reliable predictor of disease progression. While HIV replication is associated with CD4 depletion in general, plasma viremia by itself predicts the rate of CD4 loss only minimally in untreated patients. To resolve this paradox, I hypothesize the existence of a subpopulation of R5X4-signaling viruses. I also suggest that the gradual evolution and emergence of this subpopulation are largely responsible for the slow depletion of peripheral CD4 T cells

    LivePhantom: Retrieving Virtual World Light Data to Real Environments.

    Get PDF
    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera's position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems

    The Inherent Tracer Fingerprint of Captured CO2.

    Get PDF
    Carbon capture and storage (CCS) is the only currently available technology that can directly reduce anthropogenic CO2 emissions arising from fossil fuel combustion. Monitoring and verification of CO2 stored in geological reservoirs will be a regulatory requirement and so the development of reliable monitoring techniques is essential. The isotopic and trace gas composition - the inherent fingerprint - of captured CO2 streams is a potentially powerful, low cost geochemical technique for tracking the fate of injected gas in CCS projects; carbon and oxygen isotopes, in particular, have been used as geochemical tracers in a number of pilot CO2 storage sites, and noble gases are known to be powerful tracers of natural CO2 migration. However, the inherent tracer fingerprint in captured CO2 streams has yet to be robustly investigated and documented and key questions remain, including how consistent is the fingerprint, what controls it, and will it be retained en route to and within the storage reservoir? Here we present the first systematic measurements of the carbon and oxygen isotopes and the trace noble gas composition of anthropogenic CO2 captured from combustion power stations and fertiliser plants. The analysed CO2 is derived from coal, biomass and natural gas feedstocks, using amine capture, oxyfuel and gasification processes, from six different CO2 capture plants spanning four different countries. We find that δ13C values are primarily controlled by the δ13C of the feedstock while δ18O values are predominantly similar to atmospheric O2. Noble gases are of low concentration and exhibit relative element abundances different to expected reservoir baselines and air, with isotopic compositions that are similar to air or fractionated air. The use of inherent tracers for monitoring and verification was provisionally assessed by analysing CO2 samples produced from two field storage sites after CO2 injection. These experiments at Otway, Australia, and Aquistore, Canada, highlight the need for reliable baseline data. Noble gas data indicates noble gas stripping of the formation water and entrainment of Kr and Xe from an earlier injection experiment at Otway, and inheritance of a distinctive crustal radiogenic noble gas fingerprint at Aquistore. This fingerprint can be used to identify unplanned migration of the CO2 to the shallow subsurface or surface

    Regulatory B cells in pregnancy: lessons from autoimmunity, graft tolerance, and cancer

    Get PDF
    The success of pregnancy is contingent on the maternal immune system recognizing and accommodating a growing semi-allogeneic fetus. Specialized subsets of lymphocytes capable of negative regulation are fundamental in this process, and include the regulatory T cells (Tregs) and potentially, regulatory B cells (Bregs). Most of our current understanding of the immune regulatory role of Bregs comes from studies in the fields of autoimmunity, transplantation tolerance, and cancer biology. Bregs control autoimmune diseases and can elicit graft tolerance by inhibiting the differentiation of effector T cells and dendritic cells (DCs), and activating Tregs. Furthermore, in cancer, Bregs are hijacked by neoplastic cells to promote tumorigenesis. Pregnancy therefore represents a condition that reconciles these fields-mechanisms must be in place to ensure maternal immunological tolerance throughout gravidity to allow the semi-allogeneic fetus to grow within. Thus, the mechanisms underlying Breg activities in autoimmune diseases, transplantation tolerance, and cancer may take place during pregnancy as well. In this review, we discuss the potential role of Bregs as guardians of pregnancy and propose an endocrine-modulated feedback loop highlighting the Breg-Treg-tolerogenic DC interface essential for the induction of maternal immune tolerance.Ruth Marian Guzman-Genuino and Kerrilyn R. Diene

    Tropopause and hygropause variability over the equatorial Indian Ocean during February and March 1999.

    Get PDF
    Measurements of temperature, water vapor, total water, ozone, and cloud properties were made above the western equatorial Indian Ocean in February and March 1999. The cold-point tropopause was at a mean pressure-altitude of 17 km, equivalent to a potential temperature of 380 K, and had a mean temperature of 190 K. Total water mixing ratios at the hygropause varied between 1.4 and 4.1 ppmv. The mean saturation water vapor mixing ratio at the cold point was 3.0 ppmv. This does not accurately represent the mean of the measured total water mixing ratios because the air was unsaturated at the cold point for about 40% of the measurements. As well as unsaturation at the cold point, saturation was observed above the cold point on almost 30% of the profiles. In such profiles the air was saturated with respect to water ice but was free of clouds (i.e., backscatter ratio <2) at potential temperatures more than 5 K above the tropopause and hygropause. Individual profiles show a great deal of variability in the potential temperatures of the cold point and hygropause. We attribute this to short timescale and space-scale perturbations superimposed on the seasonal cycle. There is neither a clear and consistent “setting” of the tropopause and hygropause to the same altitude by dehydration processes nor a clear and consistent separation of tropopause and hygropause by the Brewer-Dobson circulation. Similarly, neither the tropopause nor the hygropause provides a location where conditions consistently approach those implied by a simple “tropopause freeze drying” or “stratospheric fountain” hypothesis
    corecore