116 research outputs found

    Drug resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum malaria in Mlimba, Tanzania

    Get PDF
    BACKGROUND: Sulphadoxine-pyrimethamine (SP) has been and is currently used for treatment of uncomplicated Plasmodium falciparum malaria in many African countries. Nevertheless, the response of parasites to SP treatment has shown significant variation between individuals. METHODS: The genes for dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) were used as markers, to investigate parasite resistance to SP in 141 children aged less than 5 years. Parasite DNA was extracted by Chelex method from blood samples collected and preserved on filter papers. Subsequently, polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP) were applied to detect the SP resistance-associated point mutations on dhfr and dhps. Commonly reported point mutations at codons 51, 59, 108 and 164 in the dhfr and codons 437, 540 and 581 in the dhps domains were examined. RESULTS: Children infected with parasites harbouring a range of single to quintuple dhfr/dhps mutations were erratically cured with SP. However, the quintuple dhfr/dhps mutant genotypes were mostly associated with treatment failures. High proportion of SP resistance-associated point mutations was detected in this study but the adequate clinical response (89.4%) observed clinically at day 14 of follow up reflects the role of semi-immunity protection and parasite clearance in the population. CONCLUSION: In monitoring drug resistance to SP, concurrent studies on possible confounding factors pertaining to development of resistance in falciparum malaria should be considered. The SP resistance potential detected in this study, cautions on its useful therapeutic life as an interim first-line drug against malaria in Tanzania and other malaria-endemic countries

    Differentiation of Chronic Lymphocytic Leukemia B Cells into Immunoglobulin Secreting Cells Decreases LEF-1 Expression

    Get PDF
    Lymphocyte enhancer binding factor 1 (LEF-1) plays a crucial role in B lineage development and is only expressed in B cell precursors as B cell differentiation into mature B and plasma cells silences its expression. Chronic lymphocytic leukemia (CLL) cells aberrantly express LEF-1 and its expression is required for cellular survival. We hypothesized that modification of the differentiation status of CLL cells would result in loss of LEF-1 expression and eliminate the survival advantage provided by its aberrant expression. In this study, we first established a methodology that induces CLL cells to differentiate into immunoglobulin (Ig) secreting cells (ISC) using the TLR9 agonist, CpG, together with cytokines (CpG/c). CpG/c stimulation resulted in dramatic CLL cell phenotypic and morphologic changes, expression of cytoplasmic Ig, and secretion of light chain restricted Ig. CpG/c stimulation also resulted in decreased CLL cell LEF-1 expression and increased Blimp-1 expression, which is crucial for plasma cell differentiation. Further, Wnt pathway activation and cellular survival were impaired in differentiated CLL cells compared to undifferentiated CLL cells. These data support the notion that CLL can differentiate into ISC and that this triggers decreased leukemic cell survival secondary to the down regulation of LEF-1 and decreased Wnt pathway activation

    Inhibition of IGF-1 Signalling Enhances the Apoptotic Effect of AS602868, an IKK2 Inhibitor, in Multiple Myeloma Cell Lines

    Get PDF
    Multiple myeloma (MM) is a B cell neoplasm characterized by bone marrow infiltration with malignant plasma cells. IGF-1 signalling has been explored as a therapeutic target in this disease. We analyzed the effect of the IKK2 inhibitor AS602868, in combination with a monoclonal antibody targeting IGF-1 receptor (anti-IGF-1R) in human MM cell lines. We found that anti-IGF-1R potentiated the apoptotic effect of AS602868 in LP1 and RPMI8226 MM cell lines which express high levels of IGF-1R. Anti-IGF-1R enhanced the inhibitory effect of AS602868 on NF-κB pathway signalling and potentiated the disruption of mitochondrial membrane potential caused by AS602868. These results support the role of IGF-1 signalling in MM and suggest that inhibition of this pathway could sensitize MM cells to NF-κB inhibitors

    Selective killing of Burkitt's lymphoma cells by mBAFF-targeted delivery of PinX1

    Get PDF
    Increased expression of BAFF (B cell-activating factor belonging to the TNF family) and its receptors has been identified in numerous B-cell malignancies. A soluble human BAFF mutant (mBAFF), binding to BAFF receptors but failing to activate B-lymphocyte proliferation, may function as a competitive inhibitor of BAFF and may serve as a novel ligand for targeted therapy of BAFF receptor-positive malignancies. Pin2/TRF1-interacting protein X1 (PinX1), a nucleolar protein, potently inhibits telomerase activity and affects tumorigenicity. In this study, we generated novel recombinant proteins containing mBAFF, a polyarginine tract 9R and PinX1 (or its C/N terminal), to target lymphoma cells. The fusion proteins PinX1/C–G4S–9R–G4S–mBAFF and PinX1/C–9R–mBAFF specifically bind and internalize into BAFF receptor-positive cells, and subsequently induce growth inhibition and apoptosis. The selective cytotoxicity of the fusion proteins is a BAFF receptor-mediated process and depends on mBAFF, PinX1/C and 9R. Moreover, the fusion proteins specifically kill BAFF receptor-expressing Burkitt's lymphoma (BL) cells by inhibiting telomerase activity and the consequent shortening of telomeres. Therapeutic experiments using PinX1C–G4S–9R–G4S–mBAFF in severe combined immunodeficient (SCID) mice implanted with Raji cells showed significantly prolonged survival times, indicating the in vivo antitumor activity of the fusion protein. These results suggest the potential of PinX1/C–G4S–9R–G4S–mBAFF in targeted therapy of BL

    JTT-130, a microsomal triglyceride transfer protein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs

    Get PDF
    BACKGROUND: Microsomal transfer protein inhibitors (MTPi) have the potential to be used as a drug to lower plasma lipids, mainly plasma triglycerides (TG). However, studies with animal models have indicated that MTPi treatment results in the accumulation of hepatic TG. The purpose of this study was to evaluate whether JTT-130, a unique MTPi, targeted to the intestine, would effectively reduce plasma lipids without inducing a fatty liver. METHODS: Male guinea pigs (n = 10 per group) were used for this experiment. Initially all guinea pigs were fed a hypercholesterolemic diet containing 0.08 g/100 g dietary cholesterol for 3 wk. After this period, animals were randomly assigned to diets containing 0 (control), 0.0005 or 0.0015 g/100 g of MTPi for 4 wk. A diet containing 0.05 g/100 g of atorvastatin, an HMG-CoA reductase inhibitor was used as the positive control. At the end of the 7(th )week, guinea pigs were sacrificed to assess drug effects on plasma and hepatic lipids, composition of LDL and VLDL, hepatic cholesterol and lipoprotein metabolism. RESULTS: Plasma LDL cholesterol and TG were 25 and 30% lower in guinea pigs treated with MTPi compared to controls (P < 0.05). Atorvastatin had the most pronounced hypolipidemic effects with a 35% reduction in LDL cholesterol and 40% reduction in TG. JTT-130 did not induce hepatic lipid accumulation compared to controls. Cholesteryl ester transfer protein (CETP) activity was reduced in a dose dependent manner by increasing doses of MTPi and guinea pigs treated with atorvastatin had the lowest CETP activity (P < 0.01). In addition the number of molecules of cholesteryl ester in LDL and LDL diameter were lower in guinea pigs treated with atorvastatin. In contrast, hepatic enzymes involved in maintaining cholesterol homeostasis were not affected by drug treatment. CONCLUSION: These results suggest that JTT-130 could have potential clinical applications due to its plasma lipid lowering effects with no alterations in hepatic lipid concentrations

    Prevalence of pfmdr1, pfcrt, pfdhfr and pfdhps mutations associated with drug resistance, in Luanda, Angola

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is the infectious disease causing the highest morbidity and mortality in Angola and due to widespread chloroquine (CQ) resistance, the country has recently changed its first-line treatment recommendations for uncomplicated malaria, from CQ to artemisinin combination therapies (ACT) in adults, and sulphadoxine/pyrimethamine (S/P) in pregnant women. Loss of SP sensitivity is, however, progressing rapidly in Africa and, in this study, were investigated a number of molecular markers associated to CQ and S/P.</p> <p>Methods</p> <p>Blood samples were collected from 245 children with uncomplicated malaria, admitted at the Pediatric Hospital Dr. David Bernardino (HPDB), Angola, and the occurrence of mutations in <it>Plasmodium falciparum </it>was investigated in the <it>pfmdr1 </it>(N86Y) and <it>pfcrt </it>(K76T) genes, associated with CQ resistance, as well as in <it>pfdhfr </it>(C59R) and <it>pfdhps </it>(K540E), conferring SP resistance.</p> <p>Results</p> <p>The frequencies of <it>pfmdr1 </it>mutations in codon 86 were 28.6% N, 61.3% Y and 10.1% mixed infections (NY). The frequency of <it>pfcrt </it>mutations in codon 76 were 93.9% K, 5.7% T and 0.4% mixed infections (KT). For <it>pfdhfr </it>the results were in codon 59, 60.6% C, 20.6% R and 18.8% mixed infections (CR). Concerning <it>pfdhps</it>, 6.3% of the isolates were bearers of the mutation 540E and 5.4% mixed infections (K540E).</p> <p>Conclusion</p> <p>The results of this epidemiologic study showed high presence of CQ resistance markers while for SP a much lower prevalence was detected for the markers under study.</p

    Targeting the IGF-1R signaling and mechanisms for epigenetic gene silencing in human multiple myeloma

    Get PDF
    Multiple myeloma (MM) is a B cell malignancy characterized by the expansion of clonal plasmablast/plasma cells within the bone-marrow. It is well established that the bone-marrow microenvironment has a pivotal role in providing critical cytokines and cell–cell interactions to support the growth and survival of the MM tumor clone. The pathogenesis of MM is, however, only fragmentarily understood. Detailed genomic analysis reveals a heterogeneous and complex pattern of structural and numerical chromosomal aberrations. In this review we will discuss some of the recent results on the functional role and potential clinical use of the IGF-1R, one of the major mediators of growth and survival for MM. We will also describe some of our results on epigenetic gene silencing in MM, as it may indeed constitute a novel basis for the understanding of tumor initiation and maintenance in MM and thus may change the current view on treatment strategies for MM

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore