69 research outputs found
Retinal Vessel Segmentation Using the 2-D Morlet Wavelet and Supervised Classification
We present a method for automated segmentation of the vasculature in retinal
images. The method produces segmentations by classifying each image pixel as
vessel or non-vessel, based on the pixel's feature vector. Feature vectors are
composed of the pixel's intensity and continuous two-dimensional Morlet wavelet
transform responses taken at multiple scales. The Morlet wavelet is capable of
tuning to specific frequencies, thus allowing noise filtering and vessel
enhancement in a single step. We use a Bayesian classifier with
class-conditional probability density functions (likelihoods) described as
Gaussian mixtures, yielding a fast classification, while being able to model
complex decision surfaces and compare its performance with the linear minimum
squared error classifier. The probability distributions are estimated based on
a training set of labeled pixels obtained from manual segmentations. The
method's performance is evaluated on publicly available DRIVE and STARE
databases of manually labeled non-mydriatic images. On the DRIVE database, it
achieves an area under the receiver operating characteristic (ROC) curve of
0.9598, being slightly superior than that presented by the method of Staal et
al.Comment: 9 pages, 7 figures and 1 table. Accepted for publication in IEEE
Trans Med Imag; added copyright notic
A Review of the External Validity of Clinical Trials with Beta-Blockers in Heart Failure
This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 License.Background: Beta-blockers (BBs) are the mainstay prognostic medication for all stages of chronic heart failure (CHF). There are many classes of BBs, each of which has varying levels of evidence to support its efficacy in CHF. However, most CHF patients have one or more comorbid conditions such as diabetes, renal impairment, and/or atrial fibrillation. Patient enrollment to randomized controlled trials (RCTs) often excludes those with certain comorbidities, particularly if the symptoms are severe. Consequently, the extent to which evidence drawn from RCTs is generalizable to CHF patients has not been well described. Clinical guidelines also underrepresent this point by providing generic advice for all patients. The aim of this review is to examine the evidence to support the use of BBs in CHF patients with common comorbid conditions.
Methods: We searched MEDLINE, PubMed, and the reference lists of reviews for RCTs, post hoc analyses, systematic reviews, and meta-analyses that report on use of BBs in CHF along with patient demographics and comorbidities.
Results: In total, 38 studies from 28 RCTs were identified, which provided data on six BBs against placebo or head to head with another BB agent in ischemic and nonischemic cardiomyopathies. Several studies explored BBs in older patients. Female patients and non-Caucasian race were underrepresented in trials. End points were cardiovascular hospitalization and mortality. Comorbid diabetes, renal impairment, or atrial fibrillation was detailed; however, no reference to disease spectrum or management goals as a focus could be seen in any of the studies. In this sense, enrollment may have limited more severe grades of these comorbidities.
Conclusions: RCTs provide authoritative information for a spectrum of CHF presentations that support guidelines. RCTs may provide inadequate information for more heterogeneous CHF patient cohorts. Greater Phase IV research may be needed to fill this gap and inform guidelines for a more global patient population
Reliability of Rapid Diagnostic Tests in Diagnosing Pregnancy-Associated Malaria in North-Eastern Tanzania.
Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool
SMARTphone-based, early cardiac REHABilitation in patients with acute coronary syndromes [SMART-REHAB Trial]: A randomized controlled trial protocol
© 2016 The Author(s). Background: There are well-documented treatment gaps in secondary prevention of coronary heart disease and no clear guidelines to assist early physical activity after acute coronary syndromes (ACS). Smartphone technology may provide an innovative platform to close these gaps. This paper describes the study design of a randomized controlled trial assessing whether a smartphone-based secondary prevention program can facilitate early physical activity and improve cardiovascular health in patients with ACS. Methods: We have developed a multi-faceted, patient-centred smartphone-based secondary prevention program emphasizing early physical activity with a graduated walking program initiated on discharge from ACS admission. The program incorporates; physical activity tracking through the smartphone's accelerometer with interactive feedback and goal setting; a dynamic dashboard to review and optimize cardiovascular risk factors; educational messages delivered twice weekly; a photographic food diary; pharmacotherapy review; and support through a short message service. The primary endpoint of the trial is change in exercise capacity, as measured by the change in six-minute walk test distance at 8-weeks when compared to baseline. Secondary endpoints include improvements in cardiovascular risk factor status, psychological well-being and quality of life, medication adherence, uptake of cardiac rehabilitation and re-hospitalizations. Discussion: This randomized controlled trial will use a smartphone-phone based secondary prevention program to emphasize early physical activity post-ACS. It will provide evidence regarding the feasibility and utility of this innovative platform in closing the treatment gaps in secondary prevention. Trial registration: The trial was retrospectively registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) on April 4, 2016. The registration number is ACTRN12616000426482
Dengue: a continuing global threat.
Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∼50 million dengue infections and ∼500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …