106 research outputs found

    Legacy mercury and stoichiometry with C, N, and S in soil, pore water, and stream water across the upland‐wetland interface: The influence of hydrogeologic setting

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99104/1/2012JG002250R_Appendix_C_120728.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99104/2/jgrg20066.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99104/3/2012JG002250R_Appendix_B_100903.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99104/4/2012JG002250R_Appendix_A_100907.pd

    Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urban‐industrial region near Pensacola, Florida, USA

    Full text link
    Identifying the anthropogenic and natural sources of mercury (Hg) emissions contributing to atmospheric mercury on local, regional, and global scales continues to be a grand challenge. The relative importance of various direct anthropogenic emissions of mercury, in addition to natural geologic sources and reemission of previously released and deposited mercury, differs regionally and temporally. In this study, we used local‐scale, mesoscale, and synoptic‐scale meteorological analysis to couple the isotopic composition of ambient atmospheric mercury with potential sources of mercury contributing to a coastal urban‐industrial setting near a coal‐fired power plant in Pensacola, Florida, USA. We were able to broadly discern four influences on the isotopic composition of ambient atmospheric mercury impacting this coastal urban‐industrial region: (1) local to regional urban‐industrial anthropogenic emissions (mean ÎŽ202Hg = 0.44 ± 0.05‰, 1SD, n = 3), (2) marine‐influenced sources derived from the Gulf of Mexico (mean ÎŽ202Hg = 0.77 ± 0.15‰, 1SD, n = 4), (3) continental sources associated with north‐northwesterly flows from within the planetary boundary layer (mean ÎŽ202Hg = 0.65 ± 0.04‰, 1SD, n = 3), and (4) continental sources associated with north‐northeasterly flows at higher altitudes (i.e., 2000 m above ground level; mean ÎŽ202Hg = 1.10 ± 0.21‰, 1SD, n = 8). Overall, these data, in conjunction with previous studies, suggest that the background global atmospheric mercury pool is characterized by moderately positive ÎŽ202Hg values; that urban‐industrial emissions drive the isotopic composition of ambient atmospheric mercury toward lower ÎŽ202Hg values; and that air‐surface exchange dynamics across vegetation and soils of terrestrial ecosystems drive the isotopic composition of ambient atmospheric mercury toward higher positive ÎŽ202Hg values. The data further suggest that mass‐independent fractionation (MIF) of both even‐mass‐ and odd‐mass‐number isotopes, likely generated by photochemical reactions in the atmosphere or during reemission from terrestrial and aquatic ecosystems, can be obscured by mixing with anthropogenic emissions having different MIF signatures.Key PointsIsotopic composition of TGM differed among meteorologically identified sourcesBackground atmospheric TGM displayed moderately positive ÎŽ202Hg valuesAnthropogenic emissions drive TGM isotopic composition to lower ÎŽ202Hg valuesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136364/1/gbc20349-sup-0001-Supplementary.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136364/2/gbc20349.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136364/3/gbc20349_am.pd

    The Nature of the Density Clump in the Fornax Dwarf Spheroidal Galaxy

    Full text link
    We have imaged the recently discovered stellar overdensity located approximately one core radius from the center of the Fornax dwarf spheroidal galaxy using the Magellan Clay 6.5m telescope with the Magellan Instant Camera (MagIC). Superb seeing conditions allowed us to probe the stellar populations of this overdensity and of a control field within Fornax to a limiting magnitude of R=26. The color-magnitude diagram of the overdensity field is virtually identical to that of the control field with the exception of the presence of a population arising from a very short (less than 300 Myr in duration) burst of star formation 1.4 Gyr ago. Coleman et al. have argued that this overdensity might be related to a shell structure in Fornax that was created when Fornax captured a smaller galaxy. Our results are consistent with this model, but we argue that the metallicity of this young component favors a scenario in which the gas was part of Fornax itself.Comment: 24 pages including 8 figures and 3 tables. Accepted by Astronomical Journa

    Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Full text link
    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.Key PointsTotal mercury and methylmercury concentrations and fluxes are examined across an elevational gradient on an Adirondack, New York mountainMethylmercury concentrations across the elevational gradient are greatest in midelevation coniferous zonesSoil methylmercury concentrations are driven by the internal processing of mercury, rather than external inputs of methylmercuryPlain Language SummaryOnce mercury is emitted into the atmosphere by anthropogenic sources, it can be deposited onto the Earth’s surface. This mercury can then be converted to its toxic form of methylmercury by microbes in the soil and can accumulate in birds, altering physiology, behavior, and reproduction. We examined soils from Whiteface Mountain in the Adirondack region of New York State, USA to determine patterns in the production of methylmercury. We found that methylmercury in soils was highest in the mid‐elevation coniferous forests of the mountain and that the concentration appeared to be driven by soil microbes rather than direct deposition of mercury from the atmosphere. The finding of peak methylmercury at mid‐elevations was consistent with previous studies showing peak bird mercury concentrations at the same elevation. Thus, reductions in methylmercury concentrations in these forests is important to reducing bird mercury concentrations.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138300/1/jgrg20832_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138300/2/jgrg20832-sup-0001-2016JG003721-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138300/3/jgrg20832.pd

    Shared decision making in patients with low risk chest pain: prospective randomized pragmatic trial.

    Get PDF
    OBJECTIVE: To compare the effectiveness of shared decision making with usual care in choice of admission for observation and further cardiac testing or for referral for outpatient evaluation in patients with possible acute coronary syndrome. DESIGN: Multicenter pragmatic parallel randomized controlled trial. SETTING: Six emergency departments in the United States. PARTICIPANTS: 898 adults (aged \u3e17 years) with a primary complaint of chest pain who were being considered for admission to an observation unit for cardiac testing (451 were allocated to the decision aid and 447 to usual care), and 361 emergency clinicians (emergency physicians, nurse practitioners, and physician assistants) caring for patients with chest pain. INTERVENTIONS: Patients were randomly assigned (1:1) by an electronic, web based system to shared decision making facilitated by a decision aid or to usual care. The primary outcome, selected by patient and caregiver advisers, was patient knowledge of their risk for acute coronary syndrome and options for care; secondary outcomes were involvement in the decision to be admitted, proportion of patients admitted for cardiac testing, and the 30 day rate of major adverse cardiac events. RESULTS: Compared with the usual care arm, patients in the decision aid arm had greater knowledge of their risk for acute coronary syndrome and options for care (questions correct: decision aid, 4.2 v usual care, 3.6; mean difference 0.66, 95% confidence interval 0.46 to 0.86), were more involved in the decision (observing patient involvement scores: decision aid, 18.3 v usual care, 7.9; 10.3, 9.1 to 11.5), and less frequently decided with their clinician to be admitted for cardiac testing (decision aid, 37% v usual care, 52%; absolute difference 15%; P CONCLUSIONS: Use of a decision aid in patients at low risk for acute coronary syndrome increased patient knowledge about their risk, increased engagement, and safely decreased the rate of admission to an observation unit for cardiac testing.Trial registration ClinicalTrials.gov NCT01969240

    Effectiveness of the Chest Pain Choice decision aid in emergency department patients with low-risk chest pain: study protocol for a multicenter randomized trial

    Get PDF
    BACKGROUND: Chest pain is the second most common reason patients visit emergency departments (EDs) and often results in very low-risk patients being admitted for prolonged observation and advanced cardiac testing. Shared decision-making, including educating patients regarding their 45-day risk for acute coronary syndrome (ACS) and management options, might safely decrease healthcare utilization. METHODS/DESIGN: This is a protocol for a multicenter practical patient-level randomized trial to compare an intervention group receiving a decision aid, Chest Pain Choice (CPC), to a control group receiving usual care. Adults presenting to five geographically and ethnically diverse EDs who are being considered for admission for observation and advanced cardiac testing will be eligible for enrollment. We will measure the effect of CPC on (1) patient knowledge regarding their 45-day risk for ACS and the available management options (primary outcome); (2) patient engagement in the decision-making process; (3) the degree of conflict patients experience related to feeling uninformed (decisional conflict); (4) patient and clinician satisfaction with the decision made; (5) the rate of major adverse cardiac events at 30 days; (6) the proportion of patients admitted for advanced cardiac testing; and (7) healthcare utilization. To assess these outcomes, we will administer patient and clinician surveys immediately after each clinical encounter, obtain video recordings of the patient-clinician discussion, administer a patient healthcare utilization diary, analyze hospital billing records, review the electronic medical record, and conduct telephone follow-up. DISCUSSION: This multicenter trial will robustly assess the effectiveness of a decision aid on patient-centered outcomes, safety, and healthcare utilization in low-risk chest pain patients from a variety of geographically and ethnically diverse EDs. TRIAL REGISTRATION: NCT01969240

    Mercury isotopes in a forested ecosystem: Implications for air‐surface exchange dynamics and the global mercury cycle

    Full text link
    Forests mediate the biogeochemical cycling of mercury (Hg) between the atmosphere and terrestrial ecosystems; however, there remain many gaps in our understanding of these processes. Our objectives in this study were to characterize Hg isotopic composition within forests, and use natural abundance stable Hg isotopes to track sources and reveal mechanisms underlying the cycling of Hg. We quantified the stable Hg isotopic composition of foliage, forest floor, mineral soil, precipitation, and total gaseous mercury (THg (g) ) in the atmosphere and in evasion from soil, in 10‐year‐old aspen forests at the Rhinelander FACE experiment in northeastern Wisconsin, USA. The effect of increased atmospheric CO 2 and O 3 concentrations on Hg isotopic composition was small relative to differences among forest ecosystem components. Precipitation samples had ή 202 Hg values of −0.74 to 0.06‰ and ∆ 199 Hg values of 0.16 to 0.82‰. Atmospheric THg (g) had ή 202 Hg values of 0.48 to 0.93‰ and ∆ 199 Hg values of −0.21 to −0.15‰. Uptake of THg (g) by foliage resulted in a large (−2.89‰) shift in ή 202 Hg values; foliage displayed ή 202 Hg values of −2.53 to −1.89‰ and ∆ 199 Hg values of −0.37 to −0.23‰. Forest floor samples had ή 202 Hg values of −1.88 to −1.22‰ and ∆ 199 Hg values of −0.22 to −0.14‰. Mercury isotopes distinguished geogenic sources of Hg and atmospheric derived sources of Hg in soil, and showed that precipitation Hg only accounted for ~16% of atmospheric Hg inputs. The isotopic composition of Hg evasion from the forest floor was similar to atmospheric THg (g) ; however, there were systematic differences in ή 202 Hg values and MIF of even isotopes (∆ 200 Hg and ∆ 204 Hg). Mercury evasion from the forest floor may have arisen from air‐surface exchange of atmospheric THg (g) , but was not the emission of legacy Hg from soils, nor re‐emission of wet‐deposition. This implies that there was net atmospheric THg (g) deposition to the forest soils. Furthermore, MDF of Hg isotopes during foliar uptake and air‐surface exchange of atmospheric THg (g) resulted in the release of Hg with very positive ή 202 Hg values to the atmosphere, which is key information for modeling the isotopic balance of the global mercury cycle, and may indicate a shorter residence time than previously recognized for the atmospheric mercury pool. Key points Atmospheric Hg was fractionated during uptake by foliage (‐2.89 permil ή202Hg) Hg evading from soil was from atmospheric Hg interaction with soil environment Air‐surface exchange of Hg releases Hg with positive ή202Hg to global reservoirPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/1/2011GB004202RRts04.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/2/2011GB004202RRts05.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/3/2011GB004202RRts01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/4/gbc20021.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/5/2011GB004202RRts06.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/6/2011GB004202RRts02.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/7/2011GB004202RRts07.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97463/8/2011GB004202RRts03.pd

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    • 

    corecore