420 research outputs found

    Turbulence Heating ObserveR – satellite mission proposal

    Get PDF
    The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth’s magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space – magnetosheath, shock, foreshock and pristine solar wind – featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the ‘Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)’. THOR has been selected by European Space Agency (ESA) for the study phase

    Nuclear Organization and Dynamics of 7SK RNA in Regulating Gene Expression

    Get PDF
    We have identified 7SK RNA to be enriched in nuclear speckles. Knock-down of 7SK results in the mislocalization of nuclear speckle constituents, and the transcriptional up-regulation of a reporter gene locus. 7SK RNA transiently associates with the locus upon transcriptional down-regulation correlating with the displacement of pTEF-b

    Turner syndrome and sexual differentiation of the brain: implications for understanding male-biased neurodevelopmental disorders

    Get PDF
    Turner syndrome (TS) is one of the most common sex chromosome abnormalities. Affected individuals often show a unique pattern of cognitive strengths and weaknesses and are at increased risk for a number of other neurodevelopmental conditions, many of which are more common in typical males than typical females (e.g., autism and attention-deficit hyperactivity disorder). This phenotype may reflect gonadal steroid deficiency, haploinsufficiency of X chromosome genes, failure to express parentally imprinted genes, and the uncovering of X chromosome mutations. Understanding the contribution of these different mechanisms to outcome has the potential to improve clinical care for individuals with TS and to better our understanding of the differential vulnerability to and expression of neurodevelopmental disorders in males and females. In this paper, we review what is currently known about cognition and brain development in individuals with TS, discuss underlying mechanisms and their relevance to understanding male-biased neurodevelopmental conditions, and suggest directions for future research

    Raman spectroscopy: techniques and applications in the life sciences

    Get PDF
    Raman spectroscopy is an increasingly popular technique in many areas including biology and medicine. It is based on Raman scattering, a phenomenon in which incident photons lose or gain energy via interactions with vibrating molecules in a sample. These energy shifts can be used to obtain information regarding molecular composition of the sample with very high accuracy. Applications of Raman spectroscopy in the life sciences have included quantification of biomolecules, hyperspectral molecular imaging of cells and tissue, medical diagnosis, and others. This review briefly presents the physical origin of Raman scattering explaining the key classical and quantum mechanical concepts. Variations of the Raman effect will also be considered, including resonance, coherent, and enhanced Raman scattering. We discuss the molecular origins of prominent bands often found in the Raman spectra of biological samples. Finally, we examine several variations of Raman spectroscopy techniques in practice, looking at their applications, strengths, and challenges. This review is intended to be a starting resource for scientists new to Raman spectroscopy, providing theoretical background and practical examples as the foundation for further study and exploration

    Action to protect the independence and integrity of global health research

    Get PDF
    Storeng KT, Abimbola S, Balabanova D, et al. Action to protect the independence and integrity of global health research. BMJ GLOBAL HEALTH. 2019;4(3): e001746

    HIV-1 subtype C transmitted founders modulate dendritic cell inflammatory responses

    Get PDF
    Background Heterosexual transmission remains the main route of HIV-1 transmission and female genital tract (FGT) inflammation increases the risk of infection. However, the mechanism(s) by which inflammation facilitates infection is not fully understood. In rhesus macaques challenged with simian immunodeficiency virus, dendritic cell (DC) mediated recruitment of CD4+ T cells to the FGT was critical for infection. The aim of this study was to delineate the mechanisms underlying DC-mediated HIV infection by comparing chemokine and pro-inflammatory cytokine production in response to transmitted founder (TF) and chronic infection (CI) Envelope (Env) pseudotyped viruses (PSV). Results Monocyte-derived DCs (MDDCs) were stimulated with PSV and recombinant gp140 representing matched TF and CI pairs of four individuals and cytokine secretion measured by multiplex immuno-assay. We found that 4/9 Env induced robust MDDC inflammatory responses and of those, three were cloned from TFs. Overall, TF Env induced MDDCs from healthy donors to secrete higher concentrations of inflammatory cytokines and chemokines than those from CI, suggesting TF Env were better inducers of inflammation. Assessing the signalling pathway associated with inflammatory cytokines, we found that PSV of matched TF and CI variants and a gp140 clone activated ERK and JNK to similar levels. Recombinant soluble DC-SIGN inhibited cytokine release and activation of ERK by PSV, suggesting that Env-DC-SIGN binding was partly involved in MDDC stimulation. Therefore, Env clones might differentially stimulate MDDC immune responses via alternative, yet unidentified signalling pathways. Conclusion Overall, this could suggest that the genetics of the virus itself influences inflammatory responses during HIV infection. In the absence of pre-existing infections, induction of greater inflammatory response by TFs might favour virus survival within the healthy FGT by driving an influx of target cells to sites of infection while suppressing immune responses via IL-10

    Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at \sqrt{s}=13 TeV

    Get PDF
    This article documents the muon reconstruction and identification efficiency obtained by the ATLAS experiment for 139 \hbox {fb}^{-1} of pp collision data at \sqrt{s}=13 TeV collected between 2015 and 2018 during Run 2 of the LHC. The increased instantaneous luminosity delivered by the LHC over this period required a reoptimisation of the criteria for the identification of prompt muons. Improved and newly developed algorithms were deployed to preserve high muon identification efficiency with a low misidentification rate and good momentum resolution. The availability of large samples of Z\rightarrow \mu \mu and J/\psi \rightarrow \mu \mu decays, and the minimisation of systematic uncertainties, allows the efficiencies of criteria for muon identification, primary vertex association, and isolation to be measured with an accuracy at the per-mille level in the bulk of the phase space, and up to the percent level in complex kinematic configurations. Excellent performance is achieved over a range of transverse momenta from 3 GeV to several hundred GeV, and across the full muon detector acceptance of |\eta |<2.7

    Measurement of hadronic event shapes in high-p T multijet final states at √s = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb−1. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. [Figure not available: see fulltext.

    Alignment of the ATLAS Inner Detector in Run 2

    Get PDF
    The performance of the ATLAS Inner Detector alignment has been studied using pp collision data at v s = 13 TeV collected by the ATLAS experiment during Run 2 (2015-2018) of the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the detector geometry as accurately as possible and correct for time-dependent movements. The Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent levels have increasing numbers of degrees of freedom; in total there are almost 750,000. The alignment determines detector geometry on both short and long timescales, where short timescales describe movementswithin anLHCfill. The performance and possible track parameter biases originating from systematic detector deformations are evaluated. Momentum biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias and momentum scale bias after alignment are reduced to less than similar to 0.1 TeV-1 and 0.9 x 10(-3), respectively. Impact parameter biases are also evaluated using tracks within jets

    Dijet Resonance Search with Weak Supervision Using root S=13 TeV pp Collisions in the ATLAS Detector

    Get PDF
    This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A → BC, for mA ∼ OðTeVÞ, mB; mC ∼ Oð100 GeVÞ and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 ffiffi s p ¼ 13 TeV pp collision dataset of 139 fb−1 recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with mA, mB, and mC. For example, when mA ¼ 3 TeV and mB ≳ 200 GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on mC. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model boson
    corecore