343 research outputs found
The Uitkomst intrusion and Nkomati Ni-Cu-Cr-PGE deposit, South Africa: trace element geochemistry, Nd isotopes and high-precision geochronology
The Uitkomst intrusion is a tubular mafic-ultramafic layered body that hosts one of South Africa’s largest Ni-Cu-Cr-PGE deposits, Nkomati. The sulphide ore occurs in the form of massive lenses in the immediate quartzitic footwall and as disseminations within peridotite. The chromite ore forms an up to ∼10-m-thick layer in the lower portion of the intrusion. Uitkomst has generally been interpreted as a magma conduit, possibly related to the Bushveld event. Here, we present a new high-precision U-Pb zircon date of 2057.64 ± 0.69 Ma that overlaps with the age of the Merensky Reef of the Bushveld Complex and thus demonstrates a coeval relationship between the intrusions. Based on incompatible trace elements as well as O- and Nd isotope data (εNd −4.5 to −6.2), we show that the Uitkomst parent magmas were contaminated with up to 20% Archean upper crust prior to emplacement, and with up to 15% dolomitic country rock during emplacement. Ore formation at Nkomati was critically aided by substantial devolatisation and removal of dolomitic floor rocks leading to hydrodynamic concentration of sulphide and chromite during slumping of crystal mushes into the trough-like centre of the subsiding intrusion and its footwall
Population Monte Carlo algorithms
We give a cross-disciplinary survey on ``population'' Monte Carlo algorithms.
In these algorithms, a set of ``walkers'' or ``particles'' is used as a
representation of a high-dimensional vector. The computation is carried out by
a random walk and split/deletion of these objects. The algorithms are developed
in various fields in physics and statistical sciences and called by lots of
different terms -- ``quantum Monte Carlo'', ``transfer-matrix Monte Carlo'',
``Monte Carlo filter (particle filter)'',``sequential Monte Carlo'' and
``PERM'' etc. Here we discuss them in a coherent framework. We also touch on
related algorithms -- genetic algorithms and annealed importance sampling.Comment: Title is changed (Population-based Monte Carlo -> Population Monte
Carlo). A number of small but important corrections and additions. References
are also added. Original Version is read at 2000 Workshop on
Information-Based Induction Sciences (July 17-18, 2000, Syuzenji, Shizuoka,
Japan). No figure
Disease burden and conditioning regimens in ASCT1221, a randomized phase II trial in children with juvenile myelomonocytic leukemia: A Children's Oncology Group study
Background: Most patients with juvenile myelomonocytic leukemia (JMML) are curable only with allogeneic hematopoietic cell transplantation (HCT). However, the current standard conditioning regimen, busulfan-cyclophosphamide-melphalan (Bu-Cy-Mel), may be associated with higher risks of morbidity and mortality. ASCT1221 was designed to test whether the potentially less-toxic myeloablative conditioning regimen containing busulfan-fludarabine (Bu-Flu) would be associated with equivalent outcomes. Procedure: Twenty-seven patients were enrolled on ASCT1221 from 2013 to 2015. Pre- and post-HCT (starting Day +30) mutant allele burden was measured in all and pre-HCT therapy was administered according to physician discretion. Results: Fifteen patients were randomized (six to Bu-Cy-Mel and nine to Bu-Flu) after meeting diagnostic criteria for JMML. Pre-HCT low-dose chemotherapy did not appear to reduce pre-HCT disease burden. Two patients, however, received aggressive chemotherapy pre-HCT and achieved low disease-burden state; both are long-term survivors. All four patients with detectable mutant allele burden at Day +30 post-HCT eventually progressed compared to two of nine patients with unmeasurable allele burden (P = 0.04). The 18-month event-free survival of the entire cohort was 47% (95% CI, 21–69%), and was 83% (95% CI, 27–97%) and 22% (95% CI, 03–51%) for Bu-Cy-Mel and Bu-Flu, respectively (P = 0.04). ASCT1221 was terminated early due to concerns that the Bu-Flu arm had inferior outcomes. Conclusions: The regimen of Bu-Flu is inadequate to provide disease control in patients with JMML who present to HCT with large burdens of disease. Advances in molecular testing may allow better characterization of biologic risk, pre-HCT responses to chemotherapy, and post-HCT management
Repeated nipple fluid aspiration
Background: Despite intensive surveillance, a high rate of interval malignancies is still seen in women at increased breast cancer risk. Therefore, novel screening modalities aiming at early detection remain needed. The intraductal approach offers the possibility to directly sample fluid containing cells, DNA and proteins from the mammary ductal system where, in the majority of cases, breast cancer originates. Fluid from the breast can non-invasively be obtained by oxytocin-assisted vacuum aspiration, called nipple fluid aspiration (NFA). The goal of this feasibility study was to evaluate the potential of repeated NFA, which is a critical and essential step to evaluate its possible value as a breast cancer screening method. Methods: In this multicenter, prospective study, we annually collected nipple fluid for up to 5 consecutive years from women at increased breast cancer risk, and performed a questionnaire-based survey regarding discomfort of the aspiration. Endpoints of the current interim analyses were the feasibility and results of 994 NFA procedures in 451 women with total follow-up of 560 person years of observation. Results: In this large group of women at increased risk of breast cancer, repetitive NFA appeared to be feasible and safe. In 66.4% of aspirated breasts, nipple fluid was successfully obtained. Independent predictive factors for successful NFA were premenopausal status, spontaneous nipple discharge, smaller breast size, bilateral oophorectomy and previous use of hormone replacement therapy or anti-hormonal treatment. The procedure was well tolerated with low discomfort. Drop-out rate was 20%, which was mainly due to repeated unsuccessful aspiration attempts. Only 1.6% of women prematurely declined further participation because of side effects. Conclusions: Repeated NFA in women at increased breast cancer risk is feasible and safe. Therefore, NFA is a promising method to non-invasively obtain a valuable source of potential breast cancer specific biomarkers
Socio-economic disadvantage is associated with heavier drinking in high but not middle-income countries participating in the International Alcohol Control (IAC) Study
INTRODUCTION AND AIMS: To investigate if socio-economic disadvantage, at the individual- and country-level, is associated with heavier drinking in some middle- and high-income countries. DESIGN AND METHODS: Surveys of drinkers were undertaken in some high- and middle-income countries. Participating countries were Australia, England, New Zealand, Scotland (high-income) and Peru, Thailand and Vietnam (middle-income). Disadvantage at the country-level was defined as per World Bank (categorised as middle-or high-income); individual-level measures were (i) years of education and (ii) whether and individual was under or over the poverty line in each country. Measures of heavier drinking were (i) proportion of drinkers that consumed 8+ drinks and (ii) three drinking risk groups (lower, increasing and higher). Multi-level logistic regression models were used. RESULTS: Individual-level measures of disadvantage, lower education and living in poverty, were associated with heavier drinking, consuming 8+ drinks on a typical occasion or drinking at the higher risk level, when all countries were considered together. Drinkers in the middle-income countries had a higher probability of consuming 8+ drinks on a typical occasion relative to drinkers in the high-income countries. Interactions between country-level income and individual-level disadvantage were undertaken: disadvantaged drinkers in the middle-income countries were less likely to be heavier drinkers relative to those with less disadvantage in the high-income countries. DISCUSSION AND CONCLUSIONS: Associations between socio-economic disadvantage and heavier drinking vary depending on country-level income. These findings highlight the value of exploring cross-country differences in heavier drinking and disadvantage and the importance of including country-level measurements to better elucidate relationships
Application of Genetic Programming to High Energy Physics Event Selection
We review genetic programming principles, their application to FOCUS data
samples, and use the method to study the doubly Cabibbo suppressed decay D+ ->
K+ pi+ pi- relative to its Cabibbo favored counterpart, D+ -> K- pi+ pi+. We
find that this technique is able to improve upon more traditional analysis
methods. To our knowledge, this is the first application of the genetic
programming technique to High Energy Physics data.Comment: 39 page
A review of Monte Carlo simulations of polymers with PERM
In this review, we describe applications of the pruned-enriched Rosenbluth
method (PERM), a sequential Monte Carlo algorithm with resampling, to various
problems in polymer physics. PERM produces samples according to any given
prescribed weight distribution, by growing configurations step by step with
controlled bias, and correcting "bad" configurations by "population control".
The latter is implemented, in contrast to other population based algorithms
like e.g. genetic algorithms, by depth-first recursion which avoids storing all
members of the population at the same time in computer memory. The problems we
discuss all concern single polymers (with one exception), but under various
conditions: Homopolymers in good solvents and at the point, semi-stiff
polymers, polymers in confining geometries, stretched polymers undergoing a
forced globule-linear transition, star polymers, bottle brushes, lattice
animals as a model for randomly branched polymers, DNA melting, and finally --
as the only system at low temperatures, lattice heteropolymers as simple models
for protein folding. PERM is for some of these problems the method of choice,
but it can also fail. We discuss how to recognize when a result is reliable,
and we discuss also some types of bias that can be crucial in guiding the
growth into the right directions.Comment: 29 pages, 26 figures, to be published in J. Stat. Phys. (2011
Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies
It has been assumed until very recently that all long-range correlations are
screened in three-dimensional melts of linear homopolymers on distances beyond
the correlation length characterizing the decay of the density
fluctuations. Summarizing simulation results obtained by means of a variant of
the bond-fluctuation model with finite monomer excluded volume interactions and
topology violating local and global Monte Carlo moves, we show that due to an
interplay of the chain connectivity and the incompressibility constraint, both
static and dynamical correlations arise on distances . These
correlations are scale-free and, surprisingly, do not depend explicitly on the
compressibility of the solution. Both monodisperse and (essentially)
Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure
Observing Supermassive Black Holes across cosmic time: from phenomenology to physics
In the last decade, a combination of high sensitivity, high spatial
resolution observations and of coordinated multi-wavelength surveys has
revolutionized our view of extra-galactic black hole (BH) astrophysics. We now
know that supermassive black holes reside in the nuclei of almost every galaxy,
grow over cosmological times by accreting matter, interact and merge with each
other, and in the process liberate enormous amounts of energy that influence
dramatically the evolution of the surrounding gas and stars, providing a
powerful self-regulatory mechanism for galaxy formation. The different
energetic phenomena associated to growing black holes and Active Galactic
Nuclei (AGN), their cosmological evolution and the observational techniques
used to unveil them, are the subject of this chapter. In particular, I will
focus my attention on the connection between the theory of high-energy
astrophysical processes giving rise to the observed emission in AGN, the
observable imprints they leave at different wavelengths, and the methods used
to uncover them in a statistically robust way. I will show how such a combined
effort of theorists and observers have led us to unveil most of the SMBH growth
over a large fraction of the age of the Universe, but that nagging
uncertainties remain, preventing us from fully understating the exact role of
black holes in the complex process of galaxy and large-scale structure
formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the
book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and
Treves A. (Eds), 2015, Springer International Publishing AG, Cha
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …