819 research outputs found
An InGaAlAs-InGaAs two-color photodetector for ratio thermometry
We report the evaluation of a molecular-beam epitaxy grown two-color photodetector for radiation thermometry. This two-color photodetector consists of two p+in+ diodes, an In0.53Ga0.25Al0.22As (hereafter InGaAlAs) p+in+ diode, which has a cutoff wavelength of 1180 nm, and an In0.53Ga0.47As (hereafter InGaAs) p+in+ diode with a cutoff wavelength of 1700 nm. Our simple monolithic integrated two-color photodetector achieved comparable output signal and signal-to-noise (SNR) ratio to that of a commercial two-color Si-InGaAs photodetector. The InGaAlAs and InGaAs diodes detect blackbody temperature as low as 275°C and 125°C, respectively, with an SNR above 10. The temperature errors extracted from our data are 4°C at 275°C for the InGaAlAs diode and 2.3°C at 125°C for the InGaAs diode. As a ratio thermometer, our two-color photodetector achieves a temperature error of 12.8°C at 275°C, but this improves with temperature to 0.1°C at 450°C. These results demonstrated the potential of InGaAlAs-InGaAs two-color photodetector for the development of high performance two-color array detectors for radiation thermometry and thermal imaging of hot objects
An accurate instrument for emissivity measurements by direct and indirect methods
Emissivity is a quantity essential to consider when assessing the measurement uncertainty in non-contact temperature measurements. This paper presents a new instrument for measuring emissivity of opaque materials from 200 to 450 °C in the spectral range of 2.1 to 2.5 µm. These ranges are ideal for measuring the temperature of metals, such as aluminium, during manufacture or heat-treating process. The instrument consists of a pair of hemispherical cups coated with Vantablack® and gold respectively, a custom designed radiation thermometer, and a hot plate. This instrument enables both the direct and the indirect methods for measuring emissivity of materials. Use of two identical cups allowed for quantitative analysis of the uncertainty of the instrument to determine the most suitable emissivity measurement range. The expanded uncertainty of the instrument was lower than 0.058 (k = 2) over the entire measuring temperature range. Studies were undertaken using different materials with emissivities ranging from 0.06 to 1. These included: aluminium alloy 6082, stainless steel 304, and HiE-Coat 840M paint. Relative uncertainty analysis indicated that the indirect method was more accurate for measuring low emissivity materials, whereas the direct method was more suitable for all other materials. Our instrument, with experimentally determined measurement uncertainty, aims to offer accurate emissivity references for use in radiation thermometry applications
Crack paths under mixed mode loading
Long fatigue cracks that initially experience mixed mode displacements usually change direction in response to cyclic elastic stresses. Eventually the cracks tend to orient themselves into a pure mode I condition, but the path that they take can be complex and chaotic. In this paper, we report on recent developments in techniques for tracking the crack path as it grows and evaluating the strength of the mixed mode crack tip stress field
The scientific potential of space-based gravitational wave detectors
The millihertz gravitational wave band can only be accessed with a
space-based interferometer, but it is one of the richest in potential sources.
Observations in this band have amazing scientific potential. The mergers
between massive black holes with mass in the range 10 thousand to 10 million
solar masses, which are expected to occur following the mergers of their host
galaxies, produce strong millihertz gravitational radiation. Observations of
these systems will trace the hierarchical assembly of structure in the Universe
in a mass range that is very difficult to probe electromagnetically. Stellar
mass compact objects falling into such black holes in the centres of galaxies
generate detectable gravitational radiation for several years prior to the
final plunge and merger with the central black hole. Measurements of these
systems offer an unprecedented opportunity to probe the predictions of general
relativity in the strong-field and dynamical regime. Millihertz gravitational
waves are also generated by millions of ultra-compact binaries in the Milky
Way, providing a new way to probe galactic stellar populations. ESA has
recognised this great scientific potential by selecting The Gravitational
Universe as its theme for the L3 large satellite mission, scheduled for launch
in ~2034. In this article we will review the likely sources for millihertz
gravitational wave detectors and describe the wide applications that
observations of these sources could have for astrophysics, cosmology and
fundamental physics.Comment: 18 pages, 2 figures, contribution to Gravitational Wave Astrophysics,
the proceedings of the 2014 Sant Cugat Forum on Astrophysics; v2 includes one
additional referenc
A Framework for Interpreting Bridging Anaphora
In this paper we present a novel framework for resolving bridging anaphora.We argue that anaphora, particularly bridging anaphora, is used as a shortcut device similar to the use of compound nouns. Hence, the two natural language usage phenomena would have to be based on the same theoretical framework. We use an existing theory on compound nouns to test its validity for anaphora usages. To do this, we used hu- man annotators to interpret indirect anaphora from naturally occurring discourses. The annotators were asked to classify the relations between anaphor-antecedent pairs into relation types that have been previously used to describe the relations between a modi er and the head noun of a compound noun. We obtained very encouraging results with an average Fleiss's value of 0.66 for inter-annotation agreement. The results were evaluated against other similar natural language interpretation annota- tion experiments and were found to compare well. In order to determine the prevalence of the proposed set of anaphora relations we did a detailed analysis of a subset 20 newspaper articles. The results obtained from this also indicated that a majority (98%) of the relations could be described by the relations in the framework. The results from this analysis also showed the distribution of the relation types in the genre of news paper article discourses
InGaAs APD thermometry
The infrared detector is the most important component within any radiation thermometry based system, with its choice determining the wavelength, response time and, ultimately, the temperature measurement capabilities of the instrument. To improve upon the existing generation of radiation thermometers, more sensitive detector technologies are required. In this work, we demonstrate a direct comparison between an indium gallium arsenide (InGaAs) photodiode and an InGaAs avalanche photodiode (APD) for 1.6 μm radiation thermometry. The high internal gain of the InGaAs APD increases the sensitivity of the radiation thermometer, enabling the measurement of a target temperature more than 50 ºC lower than is typical with commercially available InGaAs photodiode thermometers. The more sensitive InGaAs APD provides faster response time measurements, hence improving the thermometer's temporal resolution. Finally, the InGaAs APD is shown to produce a quantitative thermal image with lower measured temperature fluctuation across the scene when incorporated within a highly aperture limited scanning system
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
Pulsar Timing and its Application for Navigation and Gravitational Wave Detection
Pulsars are natural cosmic clocks. On long timescales they rival the
precision of terrestrial atomic clocks. Using a technique called pulsar timing,
the exact measurement of pulse arrival times allows a number of applications,
ranging from testing theories of gravity to detecting gravitational waves. Also
an external reference system suitable for autonomous space navigation can be
defined by pulsars, using them as natural navigation beacons, not unlike the
use of GPS satellites for navigation on Earth. By comparing pulse arrival times
measured on-board a spacecraft with predicted pulse arrivals at a reference
location (e.g. the solar system barycenter), the spacecraft position can be
determined autonomously and with high accuracy everywhere in the solar system
and beyond. We describe the unique properties of pulsars that suggest that such
a navigation system will certainly have its application in future astronautics.
We also describe the on-going experiments to use the clock-like nature of
pulsars to "construct" a galactic-sized gravitational wave detector for
low-frequency (f_GW ~1E-9 - 1E-7 Hz) gravitational waves. We present the
current status and provide an outlook for the future.Comment: 30 pages, 9 figures. To appear in Vol 63: High Performance Clocks,
Springer Space Science Review
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
