462 research outputs found

    Treatment of Wine Distillery Wastewater: A Review with Emphasis on Anaerobic Membrane Reactors

    Get PDF
    This review summarises research efforts and case studies in the treatment of wine distillery wastewaters.Experiences in treating wine distillery wastewaters can contribute to the field of oenology, as many oenologists areconcerned with the selection, efficiency and economy of their wastewaters. Characteristics of wastewaters fromdifferent distilleries and various methods for treating these wastes are discussed. Wine distillery wastewaters arestrongly acidic, have a high chemical oxygen demand, high polyphenol content and are highly variable. Primaryattention is focused on the sustainable biological treatment of wine distillery wastewaters, mainly by energyefficientanaerobic digestion in different reactor configurations from bench to pilot and full-scale treatment. Finally,areas where further research and attention are required are identified

    Impact of multi-day rainfall events on surface roughness and physical crusting of very fine soils

    Get PDF
    Soil surface roughness (SSR), a description of the micro-relief of soils, affects the surface storage capacity of soils, influences the threshold flow for wind and water erosion and determines interactions and feedback processes between the terrestrial and atmospheric systems at a range of scales. Rainfall is an important determinant of SSR as it can cause the dislocation, reorientation and packing of soil particles and may result in the formation of physical soil crusts which can, in turn, affect the roughness and hydrological properties of soils. This paper describes an experiment to investigate the impact of a multi-day rainfall event on the SSR and physical crusting of very fine soils with low organic matter content, typical of a semi-arid environment. Changes in SSR are quantified using geostatistically-derived indicators calculated from semivariogram analysis of high resolution laser scans of the soil surface captured at a horizontal resolution of 78 ÎŒm (0.078 mm) and a vertical resolution of 12 ÎŒm (0.012 mm). Application of 2 mm, 5 mm and 2 mm of rainfall each separated by a 24 h drying period resulted in soils developing a structural two-layered ‘sieving’ crust characterised by a sandy micro-layer at the surface overlying a thin seal of finer particles. Analysis of the geostatistics and soil characteristics (e.g. texture, surface resistance, infiltration rate) suggests that at this scale of enquiry, and for low rainfall amounts, both the vertical and horizontal components of SSR are determined by raindrop impact rather than aggregate breakdown. This is likely due to the very fine nature of the soils and the low rainfall amounts applied

    Sustaining productivity of a Vertisol at Warra, Queensland, with fertilisers, no-tillage, or legumes. 5. Wheat yields, nitrogen benefits and water-use efficiency of chickpea-wheat rotation

    Get PDF
    In this study, the benefits of chickpea–wheat rotation compared with continuous wheat cropping (wheat–wheat rotation) were evaluated for their effects on soil nitrate nitrogen, wheat grain yields and grain protein concentrations, and water-use efficiency at Warra, southern Queensland from 1988 to 1996. Benefits in terms of wheat grain yields varied, from 17% in 1993 to 61% in 1990, with a mean increase in grain yield of 40% (825 kg/ha). Wheat grain protein concentration increased from 9.4% in a wheat–wheat rotation to 10.7% in a chickpea–wheat rotation, almost a 14% increase in grain protein. There was a mean increase in soil nitrate nitrogen of 35 kg N/ha.1.2 m after 6 months of fallow following chickpea (85 kg N/ha) compared with continuous wheat cropping (50 kg N/ha). This was reflected in additional nitrogen in the wheat grain (20 kg N/ha) and above-ground plant biomass (25 kg N/ha) following chickpea. Water-use efficiency by wheat increased from a mean value of 9.2 kg grain/ha. mm in a wheat–wheat rotation to 11.7 kg grain/ha.mm in a chickpea–wheat rotation. The water-use efficiency values were closely correlated with presowing nitrate nitrogen, and showed no marked distinction between the 2 cropping sequences. Although presowing available water in soil in May was similar in both the chickpea–wheat rotation and the wheat–wheat rotation in all years except 1996, wheat in the former used about 20 mm additional water and enhanced water-use efficiency. Thus, by improving soil fertility through restorative practices such as incorporating chickpea in rotation, water-use efficiency can be enhanced and consequently water runoff losses reduced. Furthermore, beneficial effects of chickpea in rotation with cereals could be enhanced by early to mid sowing (May–mid June) of chickpea, accompanied by zero tillage practice. Wheat of ‘Prime Hard’ grade protein (≄13%) could be obtained in chickpea–wheat rotation by supplementary application of fertiliser N to wheat. In this study, incidence of crown rot of wheat caused by Fusarium graminearum was negligible, and incidence and severity of common root rot of wheat caused by Bipolaris sorokiniana were essentially similar in both cropping sequences and inversely related to the available water in soil at sowing. No other soil-borne disease was observed. Therefore, beneficial effects of chickpea on wheat yields and grain protein were primarily due to additional nitrate nitrogen following the legume crop and consequently better water-use efficiency

    Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites

    Full text link
    Annihilating dark matter particles produce roughly as much power in electrons and positrons as in gamma ray photons. The charged particles lose essentially all of their energy to inverse Compton and synchrotron processes in the galactic environment. We discuss the diffuse signature of dark matter annihilations in satellites of the Milky Way (which may be optically dark with few or no stars), providing a tail of emission trailing the satellite in its orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron emission at radio wavelengths might be seen. We discuss the possibility of detecting these signals with current and future observations, in particular EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure

    Stochastic Resonance in Ion Channels Characterized by Information Theory

    Full text link
    We identify a unifying measure for stochastic resonance (SR) in voltage dependent ion channels which comprises periodic (conventional), aperiodic and nonstationary SR. Within a simplest setting, the gating dynamics is governed by two-state conductance fluctuations, which switch at random time points between two values. The corresponding continuous time point process is analyzed by virtue of information theory. In pursuing this goal we evaluate for our dynamics the tau-information, the mutual information and the rate of information gain. As a main result we find an analytical formula for the rate of information gain that solely involves the probability of the two channel states and their noise averaged rates. For small voltage signals it simplifies to a handy expression. Our findings are applied to study SR in a potassium channel. We find that SR occurs only when the closed state is predominantly dwelled. Upon increasing the probability for the open channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain, i.e., no SR behavior occurs.Comment: 10 pages, 2 figures, to appear in Phys. Rev.

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Impact of wildfire on interdune ecology and sediments: An example from the Simpson Desert, Australia

    Get PDF
    The stability of many sand dunes and their interdunes is dependent on vegetation and surface crust cover. When this cover is removed, the sand can be activated and fine sediments deflated making the dunefields into sources of dust. This paper reports the impact of devegetation by wildfire on an interdune in the Simpson Desert, Australia. The fire occurred in 2001 and six years after the event pronounced differences between a pair of burnt and unburnt sites was clearly discernible. The variables examined included vegetation assemblage, cyanobacteria abundance and sediment aggregation, particle-size distribution and colour; but whether they apply to all such situations is uncertain. Rate of recovery has been slow and the differences are likely to have been sustained by a combination of negative feedback processes and climate

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore