187 research outputs found

    Mining semantic relations between research areas

    Get PDF
    For a number of years now we have seen the emergence of repositories of research data specified using OWL/RDF as representation languages, and conceptualized according to a variety of ontologies. This class of solutions promises both to facilitate the integration of research data with other relevant sources of information and also to support more intelligent forms of querying and exploration. However, an issue which has only been partially addressed is that of generating and characterizing semantically the relations that exist between research areas. This problem has been traditionally addressed by manually creating taxonomies, such as the ACM classification of research topics. However, this manual approach is inadequate for a number of reasons: these taxonomies are very coarse-grained and they do not cater for the finegrained research topics, which define the level at which typically researchers (and even more so, PhD students) operate. Moreover, they evolve slowly, and therefore they tend not to cover the most recent research trends. In addition, as we move towards a semantic characterization of these relations, there is arguably a need for a more sophisticated characterization than a homogeneous taxonomy, to reflect the different ways in which research areas can be related. In this paper we propose Klink, a new approach to i) automatically generating relations between research areas and ii) populating a bibliographic ontology, which combines both machine learning methods and external knowledge, which is drawn from a number of resources, including Google Scholar and Wikipedia. We have tested a number of alternative algorithms and our evaluation shows that a method relying on both external knowledge and the ability to detect temporal relations between research areas performs best with respect to a manually constructed standard

    Retrospective analysis of alpha‐human papillomavirus (HPV) types in tissue samples from anogenital dysplasias – introduction of the RICH (Risk of HPV‐related Carcinoma in HIV+/− patients) score

    Get PDF
    Background Chronic viral infections caused by highly contagious human papillomaviruses (HPVs) from the alpha genus are a substantial risk factor for tumour diseases. Objectives The goal of this study was to compare the HPV infection pattern with histology in a patient group of immunocompromised HIV+ and non‐immunocompromised patients with anal intraepithelial neoplasia. Materials and Methods Tissue samples (n = 210) from the anogenital area of 121 patients underwent retrospective histological and molecular examination for HPV DNA prevalence by chip analysis. The study was part of a cancer screening from the Dermatology Department of the LMU Munich, Germany. All data were collected and processed anonymously. Results HPV 6 or 11 are more abundant in tissue samples from histologically diagnosed condylomata acuminata (47.7%) compared to grade 1, 2, and 3 intraepithelial neoplasias (IN 1‐3). Detection of high‐risk (hr) alpha‐HPV DNA was significantly higher in tissue samples from IN 3 (67.5%) compared to IN 1 and 2 (12.9%), and compared to condylomata acuminata (29.5%). No HPV types were detected in histologically unremarkable tissue samples. There was a significant association between the prevalence of HPV 16 and the classifications IN 1 to IN 3 (χ2 (2) = 13.62, P = 0.001). We identified a significant correlation between the prevalence of high‐risk and low‐risk (lr) HPV types and HIV, especially mixed infections of different HPV types correlated with high‐grade IN. Based on the present data, we suggest the risk of carcinoma in HIV+/− patients (RICH) score and test it in the 121 patients. Conclusions hr alpha‐HPVs, mainly HPV 16, are associated with increased oncogenic potential of premalignant lesions (IN 1‐3), especially in HIV+ patients. Based on the combination of HIV/HPV‐testing and histological analysis, we identified correlations that could potentially forecast the risk of malignant transformation and summarized them in the form of RICH score

    PRIMA1 mutation: A new cause of nocturnal frontal lobe epilepsy

    Get PDF
    Objective Nocturnal frontal lobe epilepsy (NFLE) can be sporadic or autosomal dominant; some families have nicotinic acetylcholine receptor subunit mutations. We report a novel autosomal recessive phenotype in a single family and identify the causative gene. Methods Whole exome sequencing data was used to map the family, thereby narrowing exome search space, and then to identify the mutation. Results Linkage analysis using exome sequence data from two affected and two unaffected subjects showed homozygous linkage peaks on chromosomes 7, 8, 13, and 14 with maximum LOD scores between 1.5 and 1.93. Exome variant filtering under these peaks revealed that the affected siblings were homozygous for a novel splice site mutation (c.93+2T>C) in the PRIMA1 gene on chromosome 14. No additional PRIMA1 mutations were found in 300 other NFLE cases. The c.93+2T>C mutation was shown to lead to skipping of the first coding exon of the PRIMA1 mRNA using a minigene system. Interpretation PRIMA1 is a transmembrane protein that anchors acetylcholinesterase (AChE), an enzyme hydrolyzing acetycholine, to membrane rafts of neurons. PRiMA knockout mice have reduction of AChE and accumulation of acetylcholine at the synapse; our minigene analysis suggests that the c.93+2T>C mutation leads to knockout of PRIMA1. Mutations with gain of function effects in acetylcholine receptor subunits cause autosomal dominant NFLE. Thus, enhanced cholinergic responses are the likely cause of the severe NFLE and intellectual disability segregating in this family, representing the first recessive case to be reported and the first PRIMA1 mutation implicated in disease

    Manufacturing flow line systems: a review of models and analytical results

    Get PDF
    The most important models and results of the manufacturing flow line literature are described. These include the major classes of models (asynchronous, synchronous, and continuous); the major features (blocking, processing times, failures and repairs); the major properties (conservation of flow, flow rate-idle time, reversibility, and others); and the relationships among different models. Exact and approximate methods for obtaining quantitative measures of performance are also reviewed. The exact methods are appropriate for small systems. The approximate methods, which are the only means available for large systems, are generally based on decomposition, and make use of the exact methods for small systems. Extensions are briefly discussed. Directions for future research are suggested.National Science Foundation (U.S.) (Grant DDM-8914277

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g

    Le magmatisme de la rĂ©gion de Kwyjibo, Province\ud du Grenville (Canada) : intĂ©rĂȘt pour les\ud minĂ©ralisations de type fer-oxydes associĂ©es

    Get PDF
    The granitic plutons located north of the Kwyjibo property in Quebec’s Grenville Province are of\ud Mesoproterozoic age and belong to the granitic Canatiche Complex . The rocks in these plutons are calc-alkalic, K-rich,\ud and meta- to peraluminous. They belong to the magnetite series and their trace element characteristics link them to\ud intraplate granites. They were emplaced in an anorogenic, subvolcanic environment, but they subsequently underwent\ud significant ductile deformation. The magnetite, copper, and fluorite showings on the Kwyjibo property are polyphased\ud and premetamorphic; their formation began with the emplacement of hydraulic, magnetite-bearing breccias, followed by\ud impregnations and veins of chalcopyrite, pyrite, and fluorite, and ended with a late phase of mineralization, during\ud which uraninite, rare earths, and hematite were emplaced along brittle structures. The plutons belong to two families:\ud biotite-amphibole granites and leucogranites. The biotite-amphibole granites are rich in iron and represent a potential\ud heat and metal source for the first, iron oxide phase of mineralization. The leucogranites show a primary enrichment in\ud REE (rare-earth elements), F, and U, carried mainly in Y-, U-, and REE-bearing niobotitanates. They are metamict and\ud underwent a postmagmatic alteration that remobilized the uranium and the rare earths. The leucogranites could also be\ud a source of rare earths and uranium for the latest mineralizing events

    Seasonal drought limits tree species across the Neotropics

    Get PDF
    Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This process implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions it predicts a nested pattern of taxa distribution from wet to dry areas. However, this ‘dry-tolerance’ hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the Western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the ‘dry tolerance’ hypothesis has broad applicability in the world's most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
    • 

    corecore