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Abstract

The most important models and results of the manufacturing flow line literature are
described. These include the major classes of models (asynchronous, synchronous, and con-
tinuous); the major features (blocking, processing times, failures and repairs); the major
properties (conservation of flow, flow rate-idle time, reversibility, and others); and the rela-
tionships among different models. Exact and approximate methods for obtaining quantitative
measures of performance are also reviewed. The exact methods are appropriate for small
systems. The approximate methods, which are the only means available for large systems,
are generally based on decomposition, and make use of the exact methods for small systems.
Extensions are briefly discussed. Directions for future research are suggested.
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1 Introduction

1.1 Goals of the Paper

Manufacturing flow line systems consist of material, work areas, and storage areas. Material
flows from work area to storage area to work area; it visits each work and storage area exactly
once in a fixed sequence; there is a first work area through which material enters and a last
work area through which it leaves the system. The times that parts spend in work areas are
random and this is the only source of randomness. This randomness may be due to random
processing times, random failure and repair events, or both. Storage areas can hold only a finite
amount of material. Machines are never allowed to be idle while they have parts to work on
and space in which to put parts they have worked on. Manufacturing flow lines are also called
transfer lines and production lines. In this paper, we mainly use the term ‘manufacturing
flow lines’ or simply flow lines. The work areas are usually called machines. Storage areas
are often called buffers. The material in most cases consists of discrete parts. There is only
a single kind of material in the system. Each piece of material travels the same sequence of
machines and buffers, but each may experience different delays at each point in the system.
Figure 1 depicts a five-machine flow line. A major example of the use of transfer lines is in the
high volume production of metal parts of automobiles, but flow lines can be found throughout
manufacturing industry. In the language of queuing theory, a flow line can be represented as a
finite buffer, tandem queueing system. In that case, machines are called servers, storage
areas are called buffers, and discrete parts are called customers, or jobs.

Our purposes are to survey the most widely known methods and publications in this area;
to summarize the most important results and conjectures; to organize the great deal of work
that has been done; to show relationships among models; and to offer some opinions. We will
try to emphasize those papers that are most influential, those papers that are most well-known,
or those papers that (in our opinion) should be. Like all fields, this one has fuzzy boundaries.
We will try to focus on papers that are clearly in the flow line/transfer line/production line
literature, and avoid those that belong in the much larger general queuing theory domain.

There are many different kinds of flow lines, and many different kinds of models in the
literature. The great variety of models in part reflects the variety of different kinds of systems;
in part it reflects the fact that different models lend themselves to analysis more or less easily
for different purposes. In what follows, we present or quote many mathematical results on the
behavior of these systems. The simple structure of a flow line permits very strong statements in
some cases. Some of these statements (like conservation of flow) are quite general, and can be
thought of as applying to actual systems. Others (such as methods for calculating production
rates) are specific to individual models.

Notation There have been many authors in this field, and almost as many different sets of
notation. The present authors have therefore given up the notion of satisfying everyone, and have
chosen their own earlier notation, with some modifications and compromises. Consequently, the
squares in Figure 1 represent machines and the circles represent buffers. Machines are numbered
from 1 to K, where K is the number of machines in the system. There are K−1 buffers, and the
buffer between Machines Mi and Mi+1 is Bi,i+1. Parts flow from outside the system to Machine
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Figure 1: Five-Machine Flow Line

M1, then to Buffer B1,2, then to Machine M2, then to Buffer B2,3, and so on up to Machine MK

after which they leave the system. All the parts have to be processed on all the machines. A
great deal of additional notation is defined throughout the paper.

Historically, this work has been aimed mostly at manufacturing systems. For that reason,
there is a great emphasis on machine failures as the source of randomness. The goal has been
primarily to calculate the maximum rate of flow of material through a production line. The max-
imum flow rate is often called production rate, efficiency (in some models), or throughput.
Thus, it is assumed that whenever a machine can do an operation, it does. Deliberate idleness
is not considered in these models. Other performance measures are also important, especially
the average amount of material that is found in the buffers.

Whenever Machine Mi processes material, it reduces the level of Buffer Bi−1,i and it increases
the level of Buffer Bi,i+1. On the other hand, when Machine Mi fails or takes an especially long
time to process a part, and its neighbors work normally, the level of Buffer Bi−1,i tends to
increase and the level of Buffer Bi,i+1 tends to decrease. If that persists, Buffer Bi−1,i might
become full or Buffer Bi,i+1 might become empty. In that case, one of the neighbors of Mi is
not able to operate; either Mi−1 is starved or Mi+1 is blocked (and is thus idle). Production
is then reduced because time is wasted. The isolated production rate of a machine is the
rate that it would operate at if it were not in a system with other machines and buffers.

The production rate of a line is limited in two ways. (1) The throughput can be no greater
than that of the machine with the smallest isolated production rate. When the machines are
very different in their isolated production rates, the speeds of all but the slowest are largely
wasted. (2) The unsynchronized disruptions that cause buffers to be empty or full also waste
machine capability. Buffers become empty or full because machines fail or take long times to
process material at different times. If all machines could be perfectly synchronized, not only in
performing operations, but also in failing and getting repaired, buffers would not affect flow. It
is the lack of synchronization that causes machines to be starved or blocked, and thus to lose
the opportunity to work.

Models, Reality, Mathematics, and Engineering Like all mathematical models, the mod-
els in the flow line literature are compromises between fidelity to reality and tractability. All of
engineering requires the creative use of results that are based on simplifications of reality, and
the design of production systems is not an exception. It is not possible to prove a theorem on
the bounds of errors between a model and reality, since it is not possible to fully describe reality.
Thus, in spite of the apparent restrictions on the class of systems we are considering, these
results may be widely applicable. For example, although we have assumed that there is only
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a single part type, these methods may be usable for systems with many part types. If several
parts are produced in a line, and they require different lengths of time at each machine, the
material may be treated as a single part type with random operation times. The distribution of
the processing time then represents the differences of the processing times of the different parts
and the randomness of the mixture of parts.

In addition, while we follow the literature and distinguish between reliable and unreliable
systems, it is sometimes useful to think of a failure as a long processing time, which occurs at
random. Consequently, unreliable systems may be analyzed by methods designed for reliable
systems with random operation times, and vice versa.

1.2 Major Features and Properties of Real Manufacturing Flow Lines

Transfer and production lines are of great economic importance. Thus, much of the literature
that we survey has practical value, as well as academic interest. In this section, we informally
discuss some features of real systems. Mathematical models of these phenomena are defined
more precisely in Section 2. Much of the literature is aimed at developing ways of treating the
more intractable features.

1.2.1 Synchronous/Asynchronous

Most real systems are unsynchronized. That is, the machines are not constrained to start or
stop their operations at the same instant. Even when machines have fixed, equal cycle times
(the times required for operations), the presence of buffers between them allows them to start
and stop independently, as long as the intermediate buffers are neither empty nor full. In some
applications, the machines are not machines at all, but people. In others, the operation times
cannot be fixed (for example when the parts are different, but treated as a single type). Finally,
uncertain failure and repair times can lead to unsynchronized operation times.

Consequently, asynchronous systems form an important class of mathematical models in
the literature. However, it is very difficult to treat asynchronous systems with deterministic
operation times. This difficulty is generally met in one of three ways: (1) Asynchronous systems
are usually modeled with random operation times that have exponential, phase-type, or other
tractable probability distribution. (2) Synchronous systems are defined, in which operation
times are assumed to be deterministic and equal, and when machines are not under repair, they
start and stop at the same instant. Alternatively, one may view these models as having time
discretized, and it is not important when events occur during the time intervals; by convention,
they are treated as though they occur at the beginnings or at the ends of the intervals. (3)
Continuous material systems are defined; see Section 1.2.5.

1.2.2 Saturated/Non-saturated

Material arrives at and leaves from a factory in a variety of different ways. It is always possible
for raw material to be absent, or for the means of removal of finished goods to fail. However, in
the literature, it is almost always assumed that the first machine is never starved and the last
is never blocked. Such models are called saturated models. Saturated models are of interest
because a saturated model is appropriate for addressing the most important performance issue of



1 INTRODUCTION 4

a flow line, the maximal (average) number of parts that can be produced per unit of time. This
quantity is referred to as the production rate of the flow line. However, the behavior of a flow
line under a given input process and/or output process is also of interest. Thus, some authors,
to represent the uncertain arrival and departure processes, add a buffer upstream of the first
machine, with random arrivals to it, or a buffer downstream of the last machine, with random
departures from it. Often these buffers are infinite, while the others are finite. Such models are
called unsaturated models. Another approach is simply to declare that the first machine of the
model represents the arrival process, and the second machine of the model corresponds to the
first machine of the real system. That is, an unsaturated system can equivalently be represented
by a saturated model. Because of the predominance of saturated models in the literature,
and because of the relationship between saturated and unsaturated models, we concentrate on
saturated systems in this paper.

1.2.3 Blocking and Starvation and Decoupling

The function of a buffer is to decouple machines. If a machine is subject to a disruption (a failure
or a long operation time), the machine upstream can still operate until the upstream buffer
fills up, and the machine downstream can still operate until the downstream buffer becomes
empty. The larger the buffers, the longer before the filling or emptying occur, and the larger the
production rate. Zero buffers, or pairs of machines that have no storage space between them,
have the greatest coupling; and infinite buffers, or storage areas that are never filled, have the
least. (Infinite buffers allow coupling when they become empty.)

1.2.4 Failures

Some models of flow lines have machines that can fail. When a failure occurs, a machine may
not process any material, so the buffer upstream cannot lose material and the buffer downstream
cannot gain material. A variety of assumptions about the conditions under which failure may
occur, the time until a failure starts, the time that a failure lasts, and so forth, are considered
in the literature. In this paper, we call systems in which machines can fail Flow Lines with
Unreliable Machines (FLUMs). Systems in which machines cannot fail are called Flow
Lines with Reliable Machines (FLRMs).

In FLRMs, all the randomness is due to the variability of the processing times. In FLUMs,
some randomness is due to the failures of the machines and, in some models, some randomness
may be due to variability of the processing times.

An important focus of the literature, and of this paper, are the up- and down-time distribu-
tions, the probability distributions of the time between a repair and the next failure, and of the
time between a failure and the following repair. The most common assumption, and the most
mathematically tractable, is exponential. Reality is not always so convenient, so the literature
describes a variety of ways of treating non-exponential distributions for some classes of systems.

1.2.5 Discrete/Continuous

The literature described here is most often directed at manufacturing systems with discrete
parts. That is, individual parts are treated, and each requires a non-zero, finite amount of
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time at each machine. On the other hand, systems that treat continuous material share some
characteristics with these systems: in both, machines can fail, and finite buffers can become
empty or full and thereby propagate disturbances and reduce production rates. Continuous
models, in addition to describing real systems with continuous material, can also approximate
discrete systems.

1.2.6 Realistic Up-, Down-, and Operation Times

Transfer lines are artificial systems that are built for economic purposes. As a consequence,
they have certain characteristics that are important for researchers to consider when developing
models and approximation techniques. For example, in most real systems, the machines do not
differ greatly from one another in their production rates. This is because the production rate
of the system is limited by the slowest machine, and any investment in machines that are much
better than the slowest is wasted. This is made more precise, and other realistic characteristics
are described, in Section 3.10.

1.2.7 Operating Policy

In all models surveyed, machines are not allowed to be idle if they can be operated. That is,
whenever a machine is neither blocked nor starved, it is used for an operation. Buzacott (1982)
demonstrates that this is the optimal operating policy for a two-machine line when the system
production rate is the performance measure. He points out that other policies, such as keeping
the buffer level as close as possible to some intermediate value (to avoid blocking and starvation),
have been used in practice.

There are good reasons for using other policies, however. Maximizing production rate does
not take inventory costs into account. When inventory is expensive, it may be optimal to keep
the buffer level close to an intermediate value, and to use the buffer size to limit the deviation
from that ideal level. Even still, it is useful to study systems operated in this way to determine
their maximum possible production rates.

1.2.8 Non-Perishability

In the literature we survey, the material in buffers is assumed to be non-perishable. That is, it
does not decay or lose value, no matter how long it waits.

1.3 Other Features

There are manufacturing systems that differ from those described in Section 1.2, but which are
close enough so that the methods and characteristics surveyed in this paper should, to some
extend, be extendible to them. They include systems with:

machines in parallel Systems are built with machines in parallel for two reasons: either
to achieve a greater production rate or to achieve a greater reliability. The first case is often
observed when some operation is inherently much slower than the others. The second case is
encountered when some machine is much less reliable than the others.
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assembly operations In a flow line, each machine feeds a single buffer, and each buffer feeds
a single machine. In assembly systems, however, two or more buffers can feed a single machine.
The machine takes one part from each upstream buffer, and assembles a part from them. (This
can be generalized in a variety of ways, including disassembly.)

pallets Some systems require parts to be fitted onto pallets or fixtures before they are allowed
to enter. In some cases, the fixtures allow for very precise location of holes. Because the number
of pallets is limited, parts must sometimes wait before they can be processed, even when the
first machine is operational and not blocked. From the point of view of the pallets, such systems
are closed loops. In fact, one can calculate performance measures by ignoring the parts and
modeling only the movement of pallets.

1.4 Review of Reviews

Because of the economic and academic interest in this area, it has generated a great deal of
literature, starting in the early 1950’s. That literature, in turn, has generated a large number
of reviews, which we review here. Because this survey emphasizes the most recent approaches
and results, we do not cover all papers that have been devoted to flow lines. Many other
references are listed or described in these reviews. In addition, excellent surveys can be found in
theses, including those by Ammar (1980), Anderson (1968), Boxma (1977), Buzacott (1967a),
Dattatreya (1978), De Koster (1988a), Dudick (1979), Jafari (1982), Liu (1990), Schick (Schick
and Gershwin, 1978), Sheskin (1974), Wiley (1981), as well as the monograph of Newell (1979).

Buzacott (1967a) describes the earliest Russian work. Because this work is difficult to obtain,
and to translate, we quote from Buzacott (1967a):

It is not known when buffer stocks were first used to improve the efficiency of an
automatic transfer line. It seems to have been about 1946 in Russia. The earliest
theoretical papers were published there (Erpsher, 1952; Vladzievskii, 1952 and 1953).

Vladzievskii’s work is important as he was the first author to use probability the-
ory to explain the behaviour of automatic transfer lines. In the 1953 paper he used a
Markov process approach to solve the case of two identical stages with identical expo-
nential repair time distributions separated by a fixed capacity buffer... Vladzievskii
has subsequently written a book on automatic transfer lines (1958 — referred to in
Yu Retsker and Bunin, 1964)....

Yu Retsker and Bunin (1964) gives curves based on Vladzievskii’s work which
enable the economic optimum number of sections into which a line should be divided
to be found.

Koenigsberg (1959) begins his review by saying that the production line “has been all but
neglected in the annals of operations research and management science.” This problem has been
substantially remedied since then, as evidenced by the size of this paper and its reference list. He
says that “Three major problems in the design and operation of production lines are concerned
with (a) the number of stages in the line, (b) the location of bunkers or pulsating stores [buffers],
(c) the size of these pulsating stores.” Tools for the solution of these problems did not appear
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until the 1980’s. They are discussed in Section 5. Koenigsberg describes a number of different
approaches and some systems that were in use in industry.

Buxey, Slack, and Wild (1973) survey a wider variety of phenomena than are found in most
of the papers described here. Papers they surveyed covered line balancing, flexibility (in those
days called mixed-model production), human factors, parallel stations, allocation of part types to
production lines, and the “launching” of work into lines. They consider conveyor belt systems,
and they survey studies of the effect of belt speed. They also survey the literature to that date
on the effects of buffer stocks.

Buzacott and Hanifin (1978a) introduce the concepts of single station and total line failures,
and operation dependent and time dependent failures. (See Section 2.1.3.) They provide simple
formulas to calculate the production rate of a line without buffers and with either time dependent
and operation dependent failures. They describe the work of Vladzievskii (1953) (which is
available only in Russian) and Sevast’yanov (1962) and other, more recent papers. They point
out that it would be easy to include the effects of total line failures on any of these models.
Finally, they compared the performance prediction of one of Buzacott’s models with a simulation
based on real data, and they conclude that there are significant differences, which they attribute
to the non-memoryless behavior of the repair and failure times. Buzacott and Hanifin (1978b)
discuss the state of the art in transfer line design and modeling. They describe such physical
and mechanical issues as the transfer mechanism, shunt versus series banks (which determine
whether the material in buffers is moved according to FIFO or LIFO), and the design of the
line to reduce cycle time, failure frequencies, and downtime duration. They discuss and critique
both the practice of simulation as a tool for the design of lines, and the existing analytic models.

Perros (1984) is simply a list of 75 relevant papers on queueing networks with blocking.
Smunt and Perkins (1985) focus on “unpaced assembly lines with stochastic task times” —

roughly, what we call asynchronous flow lines with reliable machines. They are particularly
interested in line design, the problem of locating and sizing buffers, and allocating tasks to
stations. They review many simulation papers and they perform their own simulations to test
Hillier and Boling’s “bowl phenomenon.” They conclude that it is “highly situation specific.”

Awate and Sastry (1987) survey much of the transfer and flow line literature. They review
the solution methods of most of the important papers. Gun (1987) is a systematic description
of 23 of the major papers in this field. For each paper, the model, the performance measure,
and the method are briefly sketched. Perros (1988) describes the literature of two-node queuing
networks with blocking. Because this review is restricted to small systems, it is able to report
on many analytic solutions. It is restricted to asynchronous models. Perros (1989) surveys the
literature on queueing networks with blocking. It includes models with reliable or unreliable
machines, having tandem or more general topologies. He considers models useful for different
applications: computer systems, communication networks, and production systems. Most of the
paper deals with approximate techniques. Onvural (1990) surveys closed queuing networks with
finite buffers. This paper is more concerned with computer systems than production systems,
and, like Perros (1988), it emphasizes asynchronous models. A variety of blocking mechanisms
and equivalences among network types are described. (See Section 2.1.1.)

Perros and Altiok (1989) is the proceedings of a conference on queuing networks with block-
ing. It contains many papers on a variety of topics in this area.
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1.5 Outline

In Section 2 we present the major classes of mathematical models of flow lines. We examine
the most important properties of flow lines, and the relationships among the models, in Section
3. Methods that analyze systems exactly are explained in Section 4. Because of the finiteness
of the buffers, only special systems have exact solutions. Approximate methods are shown in
Section 5. The most important methods are decompositions, in which large systems are broken
into a set of small systems. Extensions are considered in Section 6. Conclusions and directions
for further research are presented in Section 7. Coxian and phase-type distributions, which are
used extensively throughout the paper, are described in the appendix. Also, some mathematical
claims are proved in the appendix.

2 Flow Line Models

In this section, we introduce three major classes of models that have been considered for the
analysis of tandem production lines. We describe assumptions that are made in most of the
literature. Some exceptions are summarized in Section 6.

2.1 Asynchronous Models

2.1.1 Blocking Issues

All real buffers have finite capacity. It is convenient to define the intermediate storage
capacity between Machines Mi and Mi+1, Ci,i+1, to be the total number of parts that can be
stored between the two machines. We define the capacity or size Ni,i+1 of Buffer Bi,i+1 to
include the space on Machine Mi+1. It satisfies Ni,i+1 = Ci,i+1 + 1. Let N = (N1,2, ..., NK−1,K)
denote the buffer capacity vector. These quantities are constant system parameters. We also
define the buffer level ni,i+1 to be the random variable that indicates the number of parts in
Buffer Bi,i+1 at any time, including the part on Machine Mi+1, if any. It satisfies

0 ≤ ni,i+1 ≤ Ni,i+1 (1)

Since the buffers have finite capacity, blocking may occur. Different types of blocking mech-
anisms are of interest: blocking-after-service and blocking-before-service (Perros, 1989).
Blocking-after-service (BAS) is also referred to as type-1 blocking (Onvural and Perros, 1986),
manufacturing blocking, production blocking, transfer blocking, and non-immediate
blocking (Gun and Makowski, 1989). BAS blocking occurs if, at the instant of completion of a
part on Machine Mi, the downstream buffer, Bi,i+1, is full. In that case, the part stays on the
machine until a space is available in Buffer Bi,i+1. During this time the machine is prevented
from working and is said to be blocked. When a space becomes available in the downstream
buffer, the part is immediately transferred and the machine can start processing another part,
if any.

Blocking-before-service (BBS), is also referred to as type-2 blocking (Onvural and Perros,
1986), communication blocking, service blocking, and immediate blocking (Gun and
Makowski, 1989). A machine can start processing a part only if there is a space available in
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the downstream buffer. Otherwise, it has to wait until a space becomes available. Machine
Mi is said to be blocked when Buffer Bi,i+1 is full. BBS is further classified according to
whether the position (space) on the machine may be occupied while the machine is blocked or
not. These two cases are referred to (Perros, 1989) as BBS-PO (blocking before service
with position occupied while the machine is blocked) and BBS-PNO (blocking before
service with position non-occupied while the machine is blocked). Most often, production
lines operate under the BAS mechanism, and therefore most authors assume BAS.

Thus, when a machine is blocked, it is prevented from working. A machine may also be
prevented from working because it has no material to work on. This phenomenon is starvation.
In the case of BBS, starvation corresponds to the situation where the upstream buffer is empty.
That is, Machine Mi is starved if ni−1,i = 0. In the case of BAS, starvation corresponds to the
situation where either the upstream buffer is empty, or it contains a single part whose processing
has already been completed. The second condition corresponds to the case where the part cannot
be transferred because the machine is blocked. In this case, although the buffer is not empty,
the machine has no part to work on. (We note, however, that some authors define starvation
simply as the situation where the upstream buffer is empty.)

A machine is said to be idle if it is either starved or blocked. A machine may be simultane-
ously starved and blocked.

Following the majority of papers in the literature, we assume that the first machine, M1, is
never starved. That is, there are always parts at the input of the system. Also, we assume that
the last machine, MK , is never blocked. There are always spaces for Machine MK to deliver its
parts. In other words, we only consider saturated models. See Section 1.2.2.

The issue of blocking definition was first raised by Altiok and Stidham (1982) who criticized
a two-machine model of Gershwin and Berman (1981) that assumed BBS-PO. They pointed
out that in a manufacturing system, there is no reason for the first machine to stop until it
has completed an operation and there is no room for the completed part. The more recent
literature on flow line models with blocking has paid a great deal of attention to blocking
mechanisms. Actually, although BAS is likely to be encountered more often, there also exist
flow lines operating under BBS assumptions.

2.1.2 Processing Times

The time required for a machine to perform an operation on a part is called the processing
time or operation time or sometimes cycle time. This processing time may be either a
constant or a variable. In the later case, the processing times at a machine are usually assumed
to be random variables having a common distribution. Moreover, it is usually assumed that
successive processing times are independent of one another. In other words, processing times
are i.i.d. random variables.

It is also usually assumed that processing times at different machines are independent of
one another. Deterministic (constant) processing time is just a special case of this. Other typi-
cal distributions commonly used are exponential distributions, geometric distributions,
Coxian distributions, and phase-type distributions (Kleinrock, 1975; Neuts, 1981). Since
these distributions are of great importance when analyzing flow lines, a brief review of Coxian
and phase-type distributions is given in the Appendix.
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2.1.3 Failures and Repairs

In some systems, machines are prone to failures. When a failure occurs, the machine must be
repaired and is then unavailable for processing parts. A machine is said to be operational if it
is up and is said to be working if it is operational and not idle (neither starved nor blocked).
Two major types of failures have been considered in the literature: operation dependent
failures (ODF) and time dependent failures (TDF) (Buzacott and Hanifin, 1978a).

ODFs are failures that are related to the processing of parts and thus can only occur when
the machine is working. On the other hand, TDFs are not related to the processing of parts
and thus can occur at any time, including when a machine is idle. In transfer lines that perform
high-volume metal-cutting operations, such as for the automobile industry, ODFs are mainly
due to mechanical causes (like tool breakage or motor burnout) while TDFs are mainly due to
failures of electronic systems, such as controllers. In most production lines, most failures are
ODFs (Buzacott and Hanifin, 1978a). As a result, most authors assume ODFs, and unless we
explicitly state otherwise, we assume that failures are operation dependent.

It is generally assumed that uptimes and downtimes are i.i.d. random variables. (In reality,
failures among different machines may not be independent, for example, when a poorly cast
metal part — with hard spots — causes excess wear on all the tools in a transfer line.) A
downtime (or repair time) of a machine corresponds to the time from the instant of a failure
of the machine to the instant of the next repair.

On the other hand, there are two different ways of measuring the uptime (or time to failure).
In the first, the uptime corresponds to the total working time of the machine between the instant
of the last repair to the instant of the next failure. The working time corresponds to the time
where the machine is busy processing parts and does not include idle times (when the machine
is either starved or blocked). The cause of failure is related to the time that machine has been
busy processing parts. A typical example is the wear of tools. In this case, the distribution of
uptimes is a continuous distribution.

In the second, the uptime corresponds to the total number of parts produced by the machine
from the instant of the last repair of the machine to the instant of the next failure. The cause
of failure is related to the number of operations that the machine has performed. A typical
example is a failure of the loading/unloading mechanism of parts on the machine. In that case,
the distribution of uptimes is a discrete distribution.

We refer to these two failure types as time-ODFs and number-ODFs, respectively. When
uptimes are much larger than processing times, there is little difference between them.

In the case of TDFs, the uptime corresponds to the total time (including working and idle
time) of the machine between the instant of the last repair to the instant of the next failure. In
this case, the distribution of uptimes is a continuous distribution. There is no counterpart of
the number-ODF concept.

We need to describe more precisely what happens when a failure occurs. First, in terms of
storage, two cases can be considered. Either the part stays on the machine during the repair
time, or it is moved back in the intermediate storage area. (The second alternative requires a
special treatment when the intermediate storage area is full.) Secondly, we need to define what
happens when the machine is repaired. Either the part can be reworked or it cannot. If it
cannot, it is thrown away (or scrapped). If it can, either the work resumes exactly at the point
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it stopped, or the total operation has to be performed again. Very few papers have considered
scrapping. They are discussed briefly in Section 6.2.

As for processing times, deterministic, exponential, geometric, Coxian, and phase-type are
commonly used distributions. Most authors assume that if several machines are down at the
same time, the repair process of each machine is not affected by the repair processes of the
others. This means that the repair time of a machine is the same whether or not there are
other machines currently under repair. The failures we just considered are referred to as single
machine failures (Buzacott and Hanifin 1978a). Other failures that may occur in a production
line are total line failures (Buzacott and Hanifin, 1978a). A typical example is a failure of
the power system which forces the whole line to stop. Total line failures can easily be handled
(Buzacott and Hanifin, 1978a) and, as a result, we only consider single machine failures.

2.1.4 Buffer Behavior

When a part is transferred from Buffer Bi−1,i to Buffer Bi,i+1, ni−1,i goes down by 1 and ni,i+1

goes up by 1. In the case of BBS, this happens at the instant at which Machine Mi completes
a part. Indeed, in this case, there must be a space available in Buffer Bi,i+1 for Machine Mi to
be working. As soon as the machine completes its operation, the part can be transferred into
the downstream buffer.

For BAS, this is also true as long as the downstream buffer is not full at the instant of
processing completion. Otherwise, the part cannot be transferred immediately. The transfer
will occur as soon as a space is available in Buffer Bi,i+1. This transfer will therefore either occur
at the instant of processing completion of machine Mi+1, or it will be delayed if this machine is
blocked.

An important feature of BAS is that simultaneous transfers can occur. Indeed, suppose
that at some instant, Buffers Bi,i+1, Bi+1,i+2, ..., Bj−1,j are full and Machines Mi, Mi+1, ...,
Mj−1 have completed their operations and are therefore blocked. The unblocking of all these
machines will occur at the instant at which Machine Mj completes its operation. At this instant,
a simultaneous transfer of parts will take place in all the buffers. The resulting state is such
that all Buffers Bi,i+1, Bi+1,i+2, ..., Bj−1,j are again full. However, now all Machines Mi, Mi+1,
..., Mj−1 are busy working on new parts.

An issue related to buffer behavior is the transfer time of parts through the buffers. In real
systems, a part that is released to a buffer by the upstream machine is not immediately available
for the downstream machine. It takes some time for the part to be moved throughout the buffer.
It is the case, for instance, in automated transfer lines where the buffer consists of a conveyor.
This may or not have a significant impact on the behavior of transfer lines depending on the
relative values of transfer times and processing times. Most authors assume that a part which is
transferred into a buffer by its upstream machine is immediately available for the downstream
machine. In other words, the transfer time through the buffer is negligible. Non-zero transit
time are briefly discussed in Section 6.5.
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2.2 Synchronous Models

There is a distinction between synchronous and discrete time models, but that distinction
is not always observed. A synchronous model is one in which events may only occur at certain
discrete times. A discrete time model is one whose behavior is only described at certain discrete
times. For example, a model in which operations, failures, and repairs may start and end at
times tj = j∆ is a synchronous model. On the other hand, a model in which operations, failures,
and repairs may start and end at any time, but the changes in system state are only represented
at times tj = j∆ is a discrete time model. The distinction is important if, in the discrete time
model, the transition equations or performance measures are somehow adjusted to account for
the differences between the times that events occur and tj . (We are not aware of any author
actually making such an adjustment.) Discrete time models are often used as approximations
for asynchronous systems. See Section 3.8.

Having stated this distinction, we will no longer observe it. We use the term ‘synchronous’
throughout this paper.

In a synchronous model, buffer levels ni,i+1 and machine states have their changes observed
at times tj = j∆. ∆ is referred to as the time unit and, without loss of generality, it is
usually assumed that ∆ = 1. The equations for the dynamics of the changes are influenced by
whether buffer levels are assumed to change before or after the machine states during the interval
[tj−1, tj ]. In Buzacott’s synchronous models (1967a, b), changes in buffer levels are assumed to
take place before machine state changes occur; in Gershwin’s (1987a), machine state changes
occur first. Which comes first in a time step is only a matter of convenience and convention,
and does not affect the behavior of the model. A buffer level does not change if both adjacent
machines are inoperable due to being down, blocked, or starved. It also does not change if
neither adjacent machines is inoperable due to being down, blocked, or starved. Otherwise, it
increases or decreases by 1.

In the models of which we are aware, all the operations and machine state changes in the
line are treated as simultaneous, and all the buffer level changes are treated as simultaneous. In
models of operations and machine state changes, adjacent buffers must be considered, because
if they are empty or full, the machine is starved or blocked and the operation is not allowed to
occur. The blocking concepts described above for asynchronous systems — BBS and BAS —
apply to synchronous systems as well.

Synchronous models may involve both reliable and unreliable machines. FLRM (reliable)
models become non-trivial only with random operation times, for example with discrete phase-
type distributions. FLUM (unreliable) models may have deterministic or random operation
times as long as they have randomness in their up- or down-times. However, most FLUM
models have deterministic operation times. As in an asynchronous model, ODFs and TDFs can
be considered. However, we note that in the case of a synchronous model with deterministic
operation times, there is no difference between time-ODFs and number-ODFs.

2.3 Continuous Models

The feature that distinguishes continuous models from the others is that the material is treated
as continuous rather than discrete. That is, instead of discrete parts moving from buffer to
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machine to buffer at specific instants, there is a fluid that is transferred continuously. Machine
Mi is starved if one of the machines Mj , j < i upstream of it is down and all buffers between
them, Bj,j+1, . . . , Bi−1,i, are empty. Similarly, a machine is blocked if one of the machines
downstream from it is down and all buffers between them are full. The speed µi of Machine Mi

is the maximum rate at which it can transfer material from its upstream buffer to its downstream
buffer, when both machines are up and neither buffer is empty or full.

In a continuous model where machines have different speeds, a machine may be slowed down,
that is, forced to work at a rate slower than its speed. A machine Mi is slowed down by the
upstream part of the line (upstream limited) if one of the machines Mj , j < i upstream of
it works at a slower speed µj < µi and all buffers between are empty. Similarly, a machine is
slowed down by the downstream part of the line (downstream limited) if one of the machines
downstream of it works at a slower speed and all buffers between are full.

Buffer levels change in a continuous way. If Machine Mi and Machine Mi+1 are both working
at their own speed, then the level of Buffer Bi,i+1 changes by (µi−µi+1)δt during a time interval
of length δt. If either machine is down, then the appropriate term in this expression is deleted;
if both are down, then the buffer level does not change. If either machine is slowed down, then
the adjusted speed is used in this expression.

In a continuous model, some of the issues discussed for the asynchronous model are not
meaningful, for instance, concepts like BAS and BBS. The continuous model has mainly been
used when machines are unreliable. Again, the uptimes and downtimes are usually assumed
to be i.i.d. random variables with continuous distributions, and both ODFs and TDFs can be
considered. In some continuous models with ODFs, the failure rate of a machine is reduced
when this machine is slowed down. (See Section 3.8.1.)

The continuous model is naturally suited to production systems in which the material that is
to be processed is a fluid rather than discrete entities like parts — such as chemical processing. In
this paper, however, we mainly devote our attention to production systems with discrete parts.
The continuous model is nevertheless of interest since it has often been used as an approximation
of discrete models, especially the asynchronous model. (See Section 3.8.)

2.4 Typical Assumptions of All Models

Most of the results that are discussed in Sections 3 to 6.7 are based on the following assumptions.
The first machine is never starved and the last machine is never blocked. All the random variables
(processing times, uptimes, downtimes) are independent random variables. The transfer time
through the buffers takes zero time. The failures are single-machine failures and most often
time-ODFs. When a failure occurs, the part stays on the machine; it can be reworked when the
machine is up again (i.e., there is no scrapping of parts); the work resumes exactly at the point it
stops. Times to failure and times to repair of machines are usually assumed to be exponentially
distributed when time is continuous, and geometrically distributed when time is discrete.

3 General Properties

The purpose of this section is to survey several results pertaining to flow line models that are of
general interest. We first introduce and discuss the major performance measures of flow lines.
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3.1 Performance Measures of Flow Lines

We first define some basic quantities of the flow line models.

Ti: average processing time of Machine Mi.

µi: average processing speed of Machine Mi.

MTTFi: average time to failure of Machine Mi.

pi: average failure rate of Machine Mi.

MTTRi: average time to repair of Machine Mi.

ri: average repair rate of Machine Mi.

ei: efficiency of Machine Mi in isolation.

ρi: production rate of Machine Mi in isolation.

The isolated efficiency ei is the average fraction of the time that Machine Mi would be
operational if it were operated in isolation, that is, never starved or blocked. This quantity is
also referred to as the availability of Machine Mi. Note that ei = 1 for a reliable machine and
ei < 1 for an unreliable machine. For synchronous systems, all µi are the same, and the time
unit is usually chosen so that µi = 1.

The following relate these quantities:

µi =
1

Ti
(2)

pi =
1

MTTFi
(3)

ri =
1

MTTRi
(4)

ei =
MTTFi

MTTFi +MTTRi
=

ri
pi + ri

(5)

ρi = µiei =
µiri
pi + ri

(6)

All the results that we review in this paper are concerned with steady-state (average long
term) behavior of the production line. Therefore, all the quantities we calculate are steady-state
performance parameters. Several measures of performance are of interest when analyzing flow
line models. The most important is the production rate, P , the average number of parts that
leave the system per unit of time. Also of importance is the inventory level of the system. Define
n̄i,i+1 to be the average number of parts (or average buffer level in Buffer Bi,i+1. The
average work-in-process (or WIP) in the system, n̄, is given by



3 GENERAL PROPERTIES 15

n̄ = n̄1,2 + ...+ n̄K−1,K . (7)

Using Little’s law (Little, 1961), the average flow time of a part, W , can then be obtained as:
W = n̄/P .

Other performance parameters of interest are:

Ei: probability of Machine Mi being working.

Pi: production rate of Machine Mi.

Si: probability of Machine Mi being starved.

Bi: probability of Machine Mi being blocked.

Ii: probability of Machine Mi being idle.

Di: probability of Machine Mi being down.

In FLRMs, the quantity Ei corresponds to the proportion of time Machine Mi is not idle
(neither starved nor blocked) and is referred to as the utilization rate of Machine Mi. In
FLUMs, it corresponds to the proportion of time Machine Mi is neither idle (starved or blocked)
nor down and is referred to as the efficiency of Machine Mi. In the following, we use efficiency
to refer to Ei for an unreliable machine as well as for a reliable machine. Finally, we note that
the production rate of a flow line as defined above is given by P = PK .

3.2 Some Basic Relationships

Several relationships hold under very general conditions, especially for general distributions
of processing times, uptimes and downtimes. We first discuss relationships pertaining to a
single machine. The first relates the production rate of a machine to its efficiency and average
processing rate:

Pi = µiEi (8)

This relationship holds for FLRMs and also for FLUMs provided that the work resumes exactly
at the point it stopped in case of failure. (See Section 2.1.3.) In synchronous systems where all
µi are 1, Pi = Ei. Consequently, Ei is often called production rate in synchronous systems.

Consider FLUMs with ODFs. Because idle times do not influence the failure/repair behavior
of the machine, we have:

piEi = riDi (9)

A proof of this result is given in the Appendix. Using equations (5) and (9) and the fact that
the probabilities sum up to 1, i.e., Ei +Di + Ii = 1, we obtain:

Ei = ei(1− Ii) (10)
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This relationship is referred to as the flow rate-idle time relationship. It holds for any machine
with ODFs.

In the case of TDFs, equations (9) and (10) are replaced by

pi(Ei + Ii) = riDi (11)

Ei = ei − Ii (12)

Equation (11) is also proved in the Appendix.
A fundamental relationship of flow lines is the conservation of flow. It states that all the

machines have the same average production rate, that is,

P1 = P2 = ... = PK = P (13)

Conservation of flow holds for FLRMs. It also holds for FLUMs provided that there is no
scrapping of parts. (If there is scrapping, it can be adjusted accordingly.)

Actually, this relationship, as well as some of the results presented below can be established
using a sample path approach. It is described in Section 3.3.

3.3 Evolution Equations

The sample path behavior of any flow line can be described by means of recursive equations.
These equations will be referred to as the evolution equations of the flow line. They have
proved to be very useful in flow line analysis, mainly for establishing qualitative properties
such as monotonicity and reversibility. These equations have been used in many papers under
various forms, e.g., Hildebrand (1967, 1968), Yamazaki and Sakasegawa (1975), Muth (1979),
Shanthikumar and Yao (1989), Dallery, Liu, and Towsley, (1990).

Consider a FLRM with the following initial condition. At time t = 0, all buffers are empty
and the first machine initiates the processing of a new part. Let σi,n denote the n’th processing
time of machine Mi, and let Di,n denote the n’th departure time of a part from Machine Mi.
In the case of BBS-PO, we have the following evolution equations:

Di,n = max
(
Di,n−1, Di−1,n, Di+1,n−Ni,i+1

)
+ σi,n , ∀i, n ≥ 1 (14)

where, by convention, Di,n = 0 ∀i if n ≤ 0.
Equation (14) results from the following observations. Since we consider BBS, the departure

time from Machine Mi occurs exactly σi,n units of time after the start of the process. The
start time of the n’th process is expressed by the first term of equation (14). There are three
conditions that must be satisfied before the n’th process of Machine Mi can begin: 1) the
machine must be available; 2) the upstream Buffer, Bi−1,i, must be non-empty; and 3) the
downstream Buffer, Bi,i+1, must be non-full. The first condition is satisfied when Machine Mi

has completed its (n − 1)’th process, which occurs at time Di,n−1. The second condition is
satisfied when Machine Mi−1 has completed its n’th process, which occurs at time Di−1,n. The
third condition is satisfied when Machine Mi+1 has completed its (n−Ni,i+1)’th process, which
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occurs at time Di+1,n−Ni,i+1 . Since these three conditions must all be satisfied, the time that
processing begins is thus the maximum of these three times.

In the case of BAS, the evolution equations are modified as follows:

Di,n = max
(
max (Di,n−1, Di−1,n) + σi,n, Di+1,n−Ni,i+1

)
, ∀i, n ≥ 1 (15)

The difference is that in the case of BAS, the process can start even though the downstream
buffer is full, but the transfer can take place only when a space is available. Finally, we note
that these evolution equations can appropriately be modified in the case of a non-empty initial
condition. (See e.g., Dallery, Liu, and Towsley, (1990).) These equations do not require any
assumption on the sequences of processing times σi,n, n ≥ 1. Similar evolution equations can
be derived in the case of BBS-PNO (Dallery, Liu, Towsley, 1991).

In both cases (BBS and BAS), the production rate of Machine Mi can then be expressed as:

Pi = lim
n→∞

n

E[Di,n]
(16)

General conditions under which this limit exists are given in (Dallery, Liu, and Towsley, 1990).
In particular, it exists if the processing times σi,n, n ≥ 1, are i.i.d. random variables.

It follows from equation (14) in the case of BBS-PO or equation (15) in the case of BAS
that:

Di+1,n ≥ Di,n ≥ Di+1,n−Ni,i+1 (17)

which implies:
E[Di+1,n]

n
≥ E[Di,n]

n
≥
E[Di+1,n−Ni,i+1 ]

n−Ni,i+1

n−Ni,i+1

n
(18)

This equation implies Pi = Pi+1 when n goes to infinity (provided that the limits exist), thus
proving conservation of flow (equation (13)).

These evolution equations have sometimes been used in a simpler form corresponding to the
case of flow lines with no intermediate storage. In the case of BAS, equation (15) then reduces
to:

Di,n = max (Di−1,n + σi,n, Di+1,n−1) , ∀i, n ≥ 1 (19)

Note that one term has been dropped. The reason is that in the case of BAS and no intermediate
storage, we have Di−1,n ≥ Di,n−1.

Using evolution equations corresponding to the case of flow lines with no intermediate stor-
age is however not restrictive since any flow line can be transformed into a flow line with no
intermediate storage by adding fictitious machines with zero processing times that represent the
transfer of parts from a buffer space to the next one. This trick is due to Avi-Itzhak (1965).
Evolution equations of this simpler form were used, among others, by Hildebrand (1967, 1968),
Yamazaki and Sakasegawa (1975), and Muth (1979).

Remark. Some of the properties presented in Sections 3.4, 3.5, and 3.6, have been obtained
using a sample path approach based on the above evolution equations. These properties hold
under fairly general assumptions pertaining to the processing times (see e.g. Dallery, Liu,
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and Towsley, 1990). These assumptions include independent and identically distributed (i.i.d.)
sequences of processing times (i.e., GI distributions) as a special case. Although these evolution
equations have mainly been used in the context of FLRMs, they can be adapted to FLUMs with
ODFs by interpreting σi,n as the completion time instead of just the processing time of Machine
Mi. (See Section 3.7.) Therefore, we conjecture that all properties that have been obtained for
FLRMs based on these evolution equations are also valid for FLUMs with ODFs. See Dallery,
Liu and Towsley (1990) for a discussion pertaining to this issue.

3.4 Blocking Issues

The purpose of this section is to discuss the relationships between the different types of block-
ing. We first compare BAS (blocking-after-service) and BBS-PNO (blocking before service with
position at the machine non-occupied while the machine is blocked). It is convenient to define
the vector 1 = (1, . . . , 1).

Consider two flow lines that differ only from one another by the buffer capacities and the
type of blocking. One line has buffer capacity vector N and is operated according to the BAS
blocking mechanism. The other has buffer capacity vector N + 1 and is operated according to
the BBS-PNO blocking mechanism. Then these two flow lines have exactly the same behavior.
In particular, they have the same production rate. In other words, BAS with buffer capacity
N is equivalent to BBS-PNO with buffer capacity N + 1. This result was first established
by Onvural and Perros (1986) in the case of exponential processing time distributions. This
equivalence actually holds for general distributions as shown by Dallery, Liu and Towsley (1991).
The proof is based on comparing the evolution equations of the two lines. The intuitive idea of
this equivalence is that, for each machine, a single buffer space (namely the first space of the
upstream buffer) for the line operating with BAS plays exactly the same role as two buffer spaces
(namely the first space of the upstream buffer and the last space of the downstream buffer) for
the line operating with BBS-PNO.

Next, we compare BAS and BBS-PO. Consider first the case of two-machine flow lines
(K = 2). In this case, there is again an exact equivalence between BBS-PO with buffer capacity
N1,2 and BAS with buffer capacity N1,2 − 1, as pointed out by Altiok and Stidham (1982),
among others. This can be viewed as a simple consequence of the above equivalence between
BBS-PNO and BAS since, in the case of two-machine flow lines, there is no difference at all
between BBS-PO and BBS-PNO. Unfortunately, in this case there is no equivalence for flow
lines consisting of more than two machines. However, it is possible to obtain bounds on the
production rate of one model from the production rate of the other model. The following results
are proved in Dallery, Liu, and Towsley (1991):

P (BBS − PO,N) ≤ P (BAS,N) ≤ P (BBS − PO,N + 1) (20)

P (BAS,N − 1) ≤ P (BBS − PO,N) ≤ P (BAS,N) (21)

This result has the following consequence. Consider, for instance, equation (20). For flow
lines with large buffer sizes, the difference in the production rates with buffer capacity N ,
P (BBS −PO,N), and with buffer capacity N + 1, P (BBS −PO,N + 1), is very small. As a



3 GENERAL PROPERTIES 19

result, the production rates with BAS, P (BAS,N), and BBS-PO, P (BBS − PO,N) are very
close to one another. As a consequence, the distinction between BAS and BBS-PO becomes less
important for flow lines with large buffers. Large buffers are often encountered in FLUMs or in
FLRMs with processing times having large variances.

Remark. Because of the equivalence of BBS-PNO with BAS, we only consider BAS and
BBS-PO in the rest of the paper, and we refer to the latter as BBS, or blocking-before-service.

3.5 Buffer Issues

The effects of intermediate storage between machines in a flow line is of great interest. Some
qualitative observations are discussed in Section 3.9. In this section, we provide some theoretical
results pertaining to these observations.

The most important property is monotonicity of the production rate of a flow line with
respect to the buffer capacities. Consider two flow lines, L1 and L2, which have identical
machines but with different buffer capacity vectors N1 and N2. The capacity of each buffer
in L2 is at least as large as the corresponding buffer in L1. That is, N1 ≤ N2. Then the
production rate of the flow line satisfies:

P (N1) ≤ P (N2) (22)

In other words, the production rate in an increasing function of the buffer capacities. This
result was proved by Shanthikumar and Yao (1989) using the evolution equations presented in
Section 3.3. Although it was established in the context of closed systems, it is readily applicable
to the case of flow lines.

An interesting question is: what happens when one or more buffers increase without limit?
Consider a flow line L with buffer capacity vector N . Suppose first that the capacity of one
buffer, say Bi,i+1, is increased while the capacity of all other buffers remains constant. From
the monotonicity property, we know that the production rate of line L will increase and since
it is bounded (in particular by the production rate in isolation of the last machine, ρK), it will
asymptotically reach a limit. Let P ∗ denote this limit. This quantity is the production rate of
a flow line having one infinite buffer.

The production rate of a flow line in which one buffer is infinite can be obtained by decom-
posing the line into two sublines. Let La be the part of line L that consists only of the first i
machines and the first i− 1 buffers. Similarly, let Lb be the part of line L that consists only of
the last (K − i) machines and the last (K − i − 1) buffers. Let P a and P b be the production
rates of lines La and Lb, respectively. Then, we have

P ∗ = min
(
P a, P b

)
(23)

This result was proved by Baccelli (1990) in the context of timed marked graphs, a special
case of a Petri net. Since a flow line can be seen as a special case of a timed marked graph, this
result applies to our case. By combining this result with the monotonicity property, we obtain
the following upper bound for the production rate of the original line:

P ≤ min
(
P a, P b

)
(24)
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By applying this decomposition several times, we obtain the following well known result: the
production rate of a flow line is bounded by the isolated production rate of the machine that
has the smallest isolated production rate. That is:

P ≤ min (ρ1, ρ2, ..., ρK) (25)

This result was reported, among others, by Muth (1973). Note that min (ρ1, ρ2, ..., ρK) is the
production rate of the flow line with infinite buffers. The following tighter upper bound on the
production rate also follows from the above approach:

P ≤ min
(
P 1,2, P 2,3, ..., PK−1,K

)
(26)

where P i,i+1 is the production rate of the two-machine flow line consisting of Machine Mi, Buffer
Bi,i+1, and Machine Mi+1. This result may be useful since the production rates of two-machine
flow lines can in most cases be exactly calculated. (See Section 4.)

The monotonicity property can also be used to obtain the following lower bound on the
production rate:

P ≥ P 0 (27)

where P 0 is the production rate of the flow line with no intermediate buffer storage, i.e., Ci,i+1 =
0, for all i = 1, ...K − 1. A discussion of how this lower bound can be calculated is provided in
Section 4.1.

3.6 Reversibility and Duality Properties

Consider a flow line, Lr, which is obtained from flow line L by reversing the flow of parts. The
first machine of Lr is the same as the last machine of L. More generally, Machine Mi in Lr is
the same as Machine MK−i+1 in line L. Also, Buffer Bi,i+1 is the same as Buffer BK−i,K−i+1.

Assume that the blocking mechanisms of L and Lr are both BAS. Then, the following
reversibility property has been established by Yamazaki and Sakasegawa (1975), Dattatreya
(1978), and Muth (1979): the production rate of the reversed line Lr is the same as that of the
original line L. The proof is based on the comparison of the sample paths of the two systems
again using the evolution equations introduced in Section 3.3. (Note that they actually used
equation (19).) With BAS, the production rate is the only performance parameter (among those
defined in Section 3.1) which is preserved by the reversibility transformation. Further results
on the reversibility of flow lines, especially pertaining to transient results and to the case of
parallel machines, can be found in (Yamazaki and Sakasegawa, 1975; Yamazaki, Kawashima,
and Sakasegawa, 1985; Melamed, 1986; Dallery, Liu, and Towsley, 1991).

Consider now the case of BBS. In that case, there is a much stronger equivalence between
the two systems. This equivalence is based on the concept of job/hole (or part/hole) duality
introduced by Gordon and Newell (1967) and also noticed earlier by Sevast’yanov (1962) and
termed articles/anti-articles. The idea is that in line L, whenever a part moves in one direction,
a hole (empty space) moves in the other direction. In the case of BBS, it is easy to check
that the behavior of parts in the reversed system is the same as the behavior of holes in the
original system. Indeed, starvation in the reversed system corresponds to blocking in the original
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system, and vice-versa. As a result, the steady-state distribution of parts in the reversed line is
exactly the same as the steady-state distribution of holes in the original line. This equivalence
especially implies that the two systems have the same production rate and that the average
buffer levels of corresponding buffers sum up to the capacity of the buffer. These results were
proved by Ammar (1980) for a Buzacott-type model (Section 4.3.2), Ammar and Gershwin
(1989) in the case of exponentially distributed processing times, and under general conditions
(general processing time distributions) by Dallery, Liu, and Towsley (1990) and Liu (1990) using
sample path arguments. Finally, we note that a similar duality property was obtained by De
Koster (1988a) in the case of continuous models of flow lines.

A question that naturally arises is whether or not these arguments can also be used in the
case of BAS. Unfortunately, the answer is no. The concept of job/hole duality still makes sense.
However, in that case, the behavior of parts in the reversed system is no longer the same as the
behavior of holes in the original system. In particular, the blocking mechanism of holes in line
L is BBS whereas that of parts in line Lr is BAS. Thus, it appears that starvation and blocking-
before-service are dual of each other with respect to the job/hole concept, but starvation and
blocking-after-service are not.

In the special case of two-machine lines with BAS, it is possible to obtain an equivalence
between the original and the reverse lines, which is similar to the duality property. This is
simply done by using the equivalence between BAS and BBS discussed in Section 3.4. Indeed,
L(BAS,N) is equivalent to L(BBS,N + 1) and Lr(BAS,N) is equivalent to Lr(BBS,N + 1).
Consequently, the duality property that relates lines L(BBS,N + 1) and Lr(BBS,N + 1) can
be reinterpreted in terms of the performance measures of L(BAS,N) and Lr(BAS,N).

Besides being of theoretical interest, duality and reversibility properties have some practical
value. They may be used as criteria for testing the validity of approximation methods of long
flow lines. (See Section 5.) Indeed, one may check whether a given approximate method is
consistent with these equivalence properties. In the case of BAS, an approximation is consistent
with these properties if it provides the same estimate of the production rate for any given flow
line and its reversed line.

3.7 Reliable Versus Unreliable Machines

In this section, we discuss some equivalences between reliable and unreliable machines. We
show that in some cases, an unreliable machine can exactly or approximately be modeled by a
reliable machine, and vice-versa. Before presenting these results, we discuss the usefulness of
such equivalences. Suppose one has a flow line where some machines are reliable while others
are unreliable. Most analytical techniques that are presented in the next sections, especially
approximate techniques, are devoted either to FLRMs or to FLUMs. Consequently, in order
to be able to use these techniques, one must be able to transform the original flow line model
having both types of machines into a model with either all the machines reliable (FLRMs) or
all the machines unreliable (FLUMs).

Moreover, one may transform a FLRM into a FLUM in order to be able to use an approximate
technique devoted to FLUMs. This may be needed if no approximate technique is available to
handle the FLRM under study, or if the parameters of the FLRM are such that one expects that
the approximate technique for FLUMs will provide more accurate results. A similar statement
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can be made regarding the transformation of FLUMs into FLRMs.
Remark. Equivalences between a reliable and an unreliable machine only exists in the case

where the unreliable machine has ODFs. Consequently, in this section, we restrict our attention
to ODFs.

3.7.1 Modeling an Unreliable Machine by a Reliable Machine

The transformation of an unreliable machine into a reliable machine is based on the notion of
completion time introduced by Gaver (1962). The completion time of an unreliable machine
is defined as the time between the instants of beginning and completion of the processing of a
part. This time includes the time corresponding to the actual processing of the part, plus the
repair times corresponding to all the failures that have occurred during the processing of this
part. Note that in the case of number-ODF, the number of failures is either 0 or 1, while in the
case of time-ODF, it can be any non-negative integer.

Consider first time-ODFs. If uptimes are exponentially distributed, successive completion
times are independent. Thus, in that case, the completion time distribution is a GI (general in-
dependent) distribution. The idea is then to replace the unreliable machine by a reliable machine
that has processing time distribution identical (or approximately identical) to the completion
time distribution of the unreliable machine. The question that arises is how to characterize the
processing time distribution of the reliable machine.

Altiok and Stidham (1983) consider the simplest case where processing time, uptime, and
downtime distributions of the unreliable machines are exponential. They calculate the Laplace
transform of the completion time and show that it can be exactly identified as a Coxian-2
distribution. For more general cases, it is still possible to obtain the Laplace transform of the
completion time (Nicola, 1986). Unfortunately, no results for obtaining a Coxian or a phase-type
distribution that exactly fits this distribution are available. However, it is possible to determine
a Coxian or a phase-type distribution that has the same first two (or three) moments as the
completion time distribution. (See Appendix.)

Another approach can be used when both the processing times and the repair times are char-
acterized by Coxian or, more generally, phase-type distributions. In that case, the completion
time distribution can be represented exactly by a phase-type distribution which is obtained by
construction; see, among others, Altiok (1985b), Bobbio and Trivedi (1988) Gun (1987), Gun
and Makowski (1990). To illustrate this, consider again the case where all distributions are
exponential. Let µ, p, and r, denote the rates of the processing time, uptime, and downtime
distributions, respectively. Then the phase-type form of the completion time distribution is
shown in Figure 2. Phases 1 and 2 correspond to the machine being up and down. In phase 1,
the machine is working and two events may happen: either the end of the processing, with rate
µ; or a failure, with rate p. Thus, the time spent in phase 1 is exponentially distributed with
rate µ+ p.

Consider now number-ODFs. If uptimes are geometrically distributed, successive completion
times are independent and therefore the completion time distribution is again a GI distribution.
In that case again, the completion time distribution can be represented exactly by a phase-type
distribution provided that processing times and repair times are characterized by phase-type
distributions. The phase-type distribution is again simply obtained by construction (Buzacott
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Figure 2: Completion Time Distribution

and Kostelski, 1987; Gun,1987).
Finally, we note that by using this approach, both types of ODFs can be combined. Also,

this approach can be used to incorporate inspection and rework, and moreover failure and
inspection features can be combined (Sastry and Awate, 1988). Thus, this approach is very
attractive since it makes it possible to incorporate many features into an equivalent completion
time distribution. We note, however, that the number of phases of the resulting distribution may
be large, especially if the original processing and repair phase-type distributions have several
phases. This is the drawback of this approach compared to the approach based on identification
of moments.

3.7.2 Modeling a Reliable Machine by an Unreliable Machine

We now discuss the transformation of a reliable machine into an unreliable machine. Consider
first the case where the reliable machine has a Coxian-2 processing time distribution with pa-
rameters (µ1, a1, µ2). It can be modeled exactly by an unreliable machine with number-ODFs
with processing speed µ1, repair rate µ2, and where a1 is the probability of having a failure
at the completion of an operation. See Buzacott (1972). Alternatively, it can also exactly be
modeled by an unreliable machine with time-ODFs whose parameters are obtained by reversing
the transformation of Altiok and Stidham (1983). It is easy to check that this can be done only
if the original distribution of processing times has a coefficient of variation greater than 1.

In more general cases, there is no simple way of doing an exact transformation. However,
it is again possible to determine the parameters of an unreliable machine whose associated
completion time distribution is close to the original processing time distribution. In that case,
one must first choose the characterization of the unreliable machine, i.e., the distributions of
processing times, uptimes, and downtimes, as well as the type of ODFs. Then, the parameters
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of these distributions are determined in such a way that the resulting distribution of completion
time has the same first two (or three) moments as the distribution of processing times of the
reliable machine. Such an approximate transformation was used by Liu and Buzacott (1989).

3.8 Relationships Among Models

In Section 2, we introduced three major classes of models: asynchronous, synchronous, and
continuous. Each model is of interest as a representation of a physical system. For instance, a
production line may operate in such a way that parts can only be transferred every T units of
time, in which case the synchronous model is probably the model of choice.

However, each of these models can also be of interest as an approximation of another model.
Most importantly, the synchronous and the continuous models can be used as approximations
of the asynchronous model. Since several authors have followed this approach, it is worthwhile
describing how it works.

3.8.1 Approximation of the Asynchronous Model

Consider an asynchronous FLUM model with the following features: the processing times are
deterministic; the uptimes and downtimes are exponentially distributed; failures are operation
dependent (ODFs). Consider first the case where all machines have the same processing time,
T . No exact solution of this asynchronous model has yet been obtained, even for the simple
case of two-machine lines, except in the case of no intermediate storage (Commault and Dallery,
1990). As a result, several authors have proposed to use either the synchronous model or the
continuous model as an approximation to the behavior of the asynchronous model.

Approximation by continuous model; identical machine speeds. The idea is to ap-
proximate the discrete flow of parts by a continuous flow of material. Each machine of the
continuous model has the same distributions for uptimes and downtimes as the corresponding
machine of the asynchronous model. All the machines of the continuous model have the same
speed, µ, which is the inverse of the processing time: µ = 1/T .

The question is whether or not the continuous model is a good approximation. It was shown
experimentally (e.g., Alvarez, Dallery, and David, 1991) that it is actually a good approximation
provided that the following assumption is satisfied.

Assumption MTS (Multiple Time Scale). The uptimes and downtimes of the machines
of the flow line are much larger (at least one order of magnitude) than the processing times.

A theoretical justification was provided by David, Xie, and Dallery (1990). They showed
that, in the case of BAS, the production rate of the asynchronous model with buffer capacity N
is bounded by the production rates of the continuous model with appropriate buffer capacities,
namely:

P (Cont,N − 1) ≤ P (Asynch,N) ≤ P (Cont,N + 1) (28)

FLUMs in which the uptimes and downtimes are large compared to the processing times
are likely to have large buffers. In this case, the difference between the first and third terms in
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equation (28) is small. This further implies that the production rate of the continuous model is
a very good approximation of that of the asynchronous model.

Approximation by synchronous model; identical machine speeds. The asynchronous
model may alternatively be approximated by a synchronous model. Each machine of the syn-
chronous model has constant processing T , and has geometric uptimes and downtimes having
the same means as the exponential uptimes and downtimes of the asynchronous model. In other
words, the synchronous model forces events to occur only a times multiple of T , whereas in
the original asynchronous model, events could occur at any time. Again, this model is a good
approximation of the asynchronous model under Assumption MTS.

Approximation by continuous model; different machine speeds. Consider now the
case where the machines of the asynchronous model have different processing times, Ti. The
asynchronous model can no longer be approximated by a synchronous model, since the major
feature of the synchronous model is that all machines have the same processing times. On the
other hand, it can still be approximated by a continuous model. The speed of machine Mi in the
continuous model is µi = 1/Ti. The characterization of uptimes requires special attention in the
case of ODFs. Let pi and ri be the failure and repair rates of Machine Mi in the asynchronous
model. If Machine Mi of the continuous model is working at its own speed, µi, its failure rate is
simply pi. However, Machine Mi may also be slowed down, as discussed in Section 2.3. Suppose
for a period of time, Machine Mi is slowed down by Machine Mj , where µj < µi. During this
time, machine Mi has a reduced failure rate equal to pi(µj/µi). The reason is that the behavior
of the continuous model must be as close as possible to that of the asynchronous model.

For the sake of simplicity, consider the case where j = i − 1. Machine Mi slowed down by
Machine Mi−1 in the continuous model corresponds to the case where buffer Bi−1,i is empty in
the asynchronous model. In that case, the behavior of the asynchronous model is as follows.
Both machines start working on a part at the same instant. Machine Mi completes its operation
Ti time units after while Machine Mi−1 completes its operation Ti−1 time units after. As a
result, Machine Mi is idle (starved) for a length of time equal to Ti−1 − Ti. During the first Ti
time units, Machine Mi may fail at rate pi, whereas during the remaining Ti−1 − Ti time units,
it cannot fail since it is starved and we assume ODFs. Therefore, its average failure rate in this
situation is pi(Ti/Ti−1) = pi(µi−1/µi). The continuous model must reflect this and, as a result,
Machine Mi has a reduced failure rate. On the other hand the repair times are exponentially
distributed with rate ri. Note that in the case of TDFs, Machine Mi of the continuous model
has always a failure rate of pi since in the asynchronous model Machine Mi may still fail when
idle.

As for the case of identical machine speeds, the continuous model is a good approximation
of the asynchronous model provided that Assumption MTS is satisfied (Alvarez, Dallery, and
David, 1991). Also, the bounding properties expressed in equation (28) still hold (David, Xie,
and Dallery, 1990). The fact that the continuous model can approximate asynchronous models
with non-identical processing times is one of its major advantages over the synchronous model.

In many FLUMs, failures occur much less often than processing of parts and therefore,
Assumption MTS is likely to be often satisfied. Thus, continuous or synchronous models used as
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approximation of asynchronous models will often provide very good estimates of the performance
parameters.

Most of the work pertaining to the approximation of asynchronous models of FLUMs with
deterministic processing times assumes exponential and geometric up- and downtimes in the case
of continuous and synchronous models, respectively. However, such an approximation can also
be used in the case of general distributions of up and down-times. Again, this approximation
will be accurate provided that Assumption MTS is satisfied (David, Xie, and Dallery, 1990).

Other approximations. The major usefulness of the continuous (or synchronous) model as
an approximation of the asynchronous model is in the case of FLUMs having deterministic
processing times. However, it can also be used in other cases, especially in the case of FLUMs
with random processing times satisfying Assumption MTS. Finally, continuous and synchronous
models have also been used as approximations of FLRMs (De Koster and Winjgaard; 1989, Liu
and Buzacott, 1989). Such approximations should especially work well in the case where the
processing times have large variances.

3.8.2 Approximation of the Synchronous Model

The continuous model can also be used as an approximation of the synchronous model of
FLUMs. Gershwin and Schick (1980) investigated the relationships between two-machine syn-
chronous FLUM systems and two-machine continuous material FLUM systems by means of the
δ-transformation. In this transformation, the failure and repair rates of both machines are
multiplied by a small number δ and the buffer size is divided by δ. That is, (r1, p1, r2, p2, N) are
the parameters of one synchronous two-machine system, and (r′1, p

′
1, r
′
2, p
′
2, N

′) are the parame-
ters of the other, with:

r′i = riδ (29)

p′i = piδ (30)

N ′ =
N

δ
(31)

The only restriction on δ is that the new buffer size N ′ must be an integer.
When N ′ is large, the performance measures of the systems are approximately related.

Production rate P ′ is close to P , and average buffer level n̄′ is approximately n̄/δ. In the
limit as δ→0, the new synchronous system approaches a continuous material flow system whose
production rate is also approximately that of the original system. This approximation provides
especially good results for systems that satisfy Assumption MTS.

The reason that this is true is that the δ-transformation is essentially a transformation of
the cycle time. The new cycle time is δ times the old cycle time, and the amount of material
processed during a new cycle time is δ times the amount of material processed during an old
cycle time. Consequently, the probability of a failure or a repair during a new cycle is δ times
the probability during an old cycle. The size of the buffer has not changed, but if it is measured
in units of the amount material processed during a cycle time, it must be divided by δ.
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We would suggest that this transformation can be extended to relate all models: synchronous,
asynchronous, and continuous, and a variety of failure and repair time distributions, blocking
models, etc. It can be useful in reducing numerical effort in analyzing systems.

Finally, we note that numerical results on the approximation of the synchronous model of
FLUMs with TDFs by a continuous model are reported by De Koster and Wijngaard (1989).
Again, it appears that this approximation is accurate provided that Assumption MTS is satisfied.

3.8.3 Other Relationships Among Models

In this section, we discuss results pertaining to the transformation of an asynchronous FLUM
with non-identical deterministic processing times into an asynchronous FLUM with identical
deterministic processing times. Such a transformation, although only an approximation, is of
interest for several reasons. First, it appears from the above discussion that the synchronous
model can be used as an approximation of asynchronous lines with deterministic processing
times only in the case where all the processing times are equal. Therefore, if one wants to use
synchronous models, it is necessary to be able to transform an asynchronous line with non-
identical processing times into an asynchronous line with identical processing times. Secondly,
even though continuous models can handle non-identical processing times, such a transformation
may still be of interest when using such models. The reason is that some solution techniques
may be restricted to (or at least simpler) the case of identical processing times. (See Section
5.2.1.)

Several transformations have been proposed. Gershwin (1987b) suggested replacing each
machine of the original line, except the fastest, by a set of two machines with no intermediate
buffer. One machine captures the unreliability behavior of the original machine, while the other
represents the effective processing time. All the machines of the resulting line have the same
processing time which is equal to the processing time of the fastest machine of the original line.
This transformation was referred to as disaggregation by Dallery, David, and Xie (1989). It is
very accurate as long as the failure and repair rates of the machine representing the processing
time are much larger than those of the machine capturing the unreliability behavior.

A second transformation was proposed by Dallery, David, and Xie (1989) and referred to as
homogenization. It consists of replacing each machine of the original line except the fastest by
a single equivalent machine. As in the case of disaggregation, all the equivalent machines have the
same processing time equal to the processing time of the fastest machine of the original line. The
parameters of each equivalent machine are obtained as follows. Its repair rate is the same as that
of the original machine. Its failure rate is obtained by prescribing that the equivalent machine
has the same production rate in isolation as that of the original machine. Homogenization is
a simpler transformation than disaggregation but is not as accurate. However, it provides a
good approximation for nearly homogeneous lines, i.e., lines where the processing times of
all machines are close to one another.

A third transformation was proposed by Liu and Buzacott (1990). It is similar to homog-
enization except that the failure and repair rates of the equivalent machine are determined by
prescribing that the first and second moments of the completion time of the equivalent machine
in isolation is the same as those of the original machine. Note that the first moment is nothing
but the production rate in isolation. The accuracy of that transformation is similar to that of
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Figure 3: Production rate as a function of buffer size for a two-machine synchronous line in
which r1 = 0.08, p1 = 0.01, r2 = 0.09, p2 = 0.01.

homogenization.

3.9 Qualitative Behavior

In all the models described in the following sections, several important features were observed.
In some cases, they were demonstrated analytically for a limited class of systems. In others,
they were observed by numerical experimentation or by simulations. They include

Saturation and Limiting behavior Production rate is a saturating function of buffer size;
that is, it is an increasing function with a finite upper bound that it approaches asymptotically
as buffer size increases without limit. (See Section 3.5.) Saturation is illustrated in Figure
3. This upper bound is the production rate of the slowest machine, in the sense of isolated
production rate ρi. If any one machine is significantly slower than the others, in that sense,
then it limits the behavior of the system. The system production rate is less than that of that
machine; buffers upstream of that machine tend to be full, and buffer downstream tend to be
empty. In Figure 3, the limiting production rate is 0.8889, which is the isolated production rate
of Machine M1, the slower of the two machines.

Effectiveness of buffers – buffers and disruptions Buffers increase the production rate
of systems only by decoupling the effects of disruptions from one part of the system to other
parts. If a failure happens upstream of a buffer, and the buffer has enough material in it, the
downstream part of the system can keep operating. Similarly, if a failure happens downstream of
a buffer, and the buffer has enough space, the upstream part of the system can keep operating.
Therefore, for a buffer to be effective, its size must be the same order of magnitude as the
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disruptions that it must block, when measured in comparable units. If the mean down time of
Machine Mi is 1/ri time units, then the size of buffers Bi−1,i and Bi,i+1 should be on the order
of the amount of material that the machines typically produce in 1/ri time units. On the other
hand, if the system is reliable (FLRM) and operation times are random, then the buffer size
should be roughly the standard deviation of an operation time. If the buffer is much smaller
than this estimate, it will have very little effect on performance; if it is much larger, it is in the
flat part of the saturation curve, and much of its capacity is wasted. In Figure 3, the maximum
curvature of the curve occurs around N = 40, which is on the order of 1/ri = 12.5. (A more
accurate value of the optimal N depends on the performance measure, as well as all four machine
reliability parameters.)

Effectiveness of buffers – system balance and imbalance Because buffers increase the
production rate of systems only by decoupling the effects of disruptions, they do not compensate
for systems that are highly unbalanced. They should not be placed near the bottleneck (neither
the machine with the smallest ρ nor the machine with the smallest µ); rather they should be
placed where disruptions are greatest. A large buffer upstream of a bottleneck will be empty
most of the time; a large buffer downstream of a bottleneck will be full most of the time. In
both cases, it is wasted (along with the in-process inventory it accumulates, when the upstream
part of the line is faster than the downstream).

Effect of increasing line length on performance Hillier and Boling (1966), using the
method of Hillier and Boling (1967), observed that as a transfer line with identical machines
and buffers increases in length, its production rate seems to decrease to a non-zero limit. De
Kok (1988) developed an approximate technique for evaluating long transfer lines consisting
of identical machines and buffers. His numerical experiments suggested the same conclusion.
Ancelin and Semery (1987), David, Semery, Ancelin, and Terracol (1987), Gershwin (1989), and
Semery (1988), made similar observations (and drew similar graphs) for different models using
different methods. (Based on the decompositions reported in Section 5.2.1, Gershwin (1991b)
developed an algorithm for predicting the limiting production rate.)

Bowl phenomenon Sevast’yanov (1962) developed a technique for analyzing long transfer
lines. (See Section 5.2.1.) Based on this approximate method, he studied the optimal design of
a line that has very many machines, where the designer can group the machines into a given
number of groupings, and where a given amount of storage space can be divided among these
groupings. He showed that the storage space should be divided equally, and the machines should
be grouped together in such a way that the first and last machine groups are equally reliable;
and that all the rest of the groups are equally reliable; and that the inner groups should be
somewhat more reliable than the outer groups.

Hillier and Boling (1966, 1972, 1977) also observed that the optimal distribution of system
resources is not an equal allocation. That is, if there is a pool of machine speed, and the goal
is to maximize the system’s production rate, the pool should not be divided equally among the
machines. Instead, the machines in the middle of the line should get more, and the machines at
the ends should get less. (This assumes that the buffer sizes are equal.) The distribution should
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be symmetric. Similarly, if the machines are identical and there is a pool of storage space, the
buffers in the middle of the line should get more, and the buffers at the ends should get less.
They called this the “bowl phenomenon” because of the shape of the distribution of operation
time (which is the inverse of machine speed).

While this phenomenon is a real feature of mathematical models of production lines, there
is some question as to whether it is of practical importance. As indicated above, Smunt and
Perkins (1985) did not feel that it generally had a large impact. Numerical results of Hillier and
Boling (1972) indicate that the gain over an equal distribution is usually less than 1%. Not only
might this gain be negated by errors in system parameters, but the reason for the bowl shape
is the usual assumption that the first machine is never starved and the last machine is never
blocked. This implies that the machines at the ends of the line are forced to be idle less than
those in the middle. The bowl shape compensates for this. In a real system, however, the first
machine is occasionally starved when suppliers fail to deliver raw material, and the last machine
is blocked during temporary declines in demand.

3.10 Realistic Values of Parameters

In most real systems,

(1) all machines operate at approximately the same speed while they are operational. Therefore,
all µi are close to one another. In other words, the line is nearly homogeneous.

(2) there is no machine which is much worse than all the others. Therefore, all ρi = µiri
ri+pi

are
close to one another.

(3) failures and repairs are much less frequent than operations. Therefore, pi and ri are at least
an order of magnitude less than µi. That is, Assumption MTS is satisfied.

(4) the production rate of the line (P) is not less than half the isolated production rate of a
typical machine (ρi).

It is always possible to find exceptions to these fuzzy rules of thumb. These considerations are
important to those who design approximate methods for analyzing these systems. If a method
works well under these conditions, it is likely to be of practical value; if not, it probably will not
be. See also the features described in Section 3.9.

4 Exact Analysis

In this section, we describe flow line models that have exact analytic solutions. Such models
are important because (1) exact solutions are better than simulations or approximations when
the models fit real systems closely, (2) they provide useful qualitative insight into the behavior
of systems, and (3) the fact that they can be solved rapidly makes them essential parts of the
decomposition and aggregation methods that are described in Section 5.

Most of the results pertaining to the exact analysis of flow line models are based on Markovian
analysis. In order to be able to describe the behavior of the flow line by a Markov process, the
distributions have to be of special form: exponential or, more generally, continuous phase-type
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distributions in the case of continuous time models; geometric or, more generally, discrete phase-
type distributions in the case of discrete time models. (See the Appendix.) However, there are
some exceptions for which the analysis is not based on Markov models. These exceptions are
most often encountered in flow lines with no intermediate storage.

The literature pertaining to this special case is discussed in Section 4.1. Section 4.2 describes
the literature of two-machine FLRM (Flow Line with Reliable Machines) models and their
solutions. The literature of two-machine FLUM (Flow Line with Unreliable Machines) models
is presented in Section 4.3. Although the systems are sometimes equivalent, as we argue in
Section 3.7, it is helpful to treat them separately. This is especially because different approximate
methods of Section 5 were designed with different kinds of systems in mind. In Section 4.4, we
describe exact methods for three-machine and larger systems.

We try to indicate which of the models in the literature are blocking-after-service systems
(BAS), and which are blocking-before-service systems (BBS). This is not always straightforward,
because early authors were evidently not concerned with this distinction. In the two-machine
case, the distinction is not important, and does not warrant new research, because each can be
transformed into the other; see Section 3.4. See the review by Perros (1988) for other papers on
two-stage systems.

Notation. In the case of two-machine flow line, we drop the index of parameters pertaining
to the buffer. That is, N1,2 and C1,2 are simply denoted by N and C, respectively.

4.1 Flow Lines with No Intermediate Storage

In this section, we restrict our attention to the case of flow lines with no intermediate storage,
that is, Ci,i+1 = 0, for all i = 1, ...,K−1. We review the part of the literature that is devoted to
this special case. The aim is to determine the average production rate of the line. Most often,
BAS is assumed.

Flow lines with no intermediate storage can operate under two transfer modes: asyn-
chronous transfer mode and synchronous transfer mode. In the former case, parts can
move independently as long as they are not blocked. In the latter case, there is always exactly
one part on each machine and the transfer of all parts occurs simultaneously at the instant when
all machines have completed their processing. Note that the asynchronous transfer mode is im-
plicitly assumed in the asynchronous model described in Section 2.1. Let P (AT ) and P (ST )
denote the production rate of a flow line operating under the asynchronous transfer mode and
synchronous transfer mode, respectively. It can be shown (Muth, 1973) that a system operat-
ing under synchronous transfer mode is less efficient than when operating under asynchronous
transfer mode, i.e.:

P (ST ) ≤ P (AT ) (32)

This relationships hold for any flow line with any number of (reliable or unreliable) machines. In
the special case of two-machine lines, the two production rates are equal, i.e.: P (ST ) = P (AT ).
Indeed, whether or not the part on Machine M2 can be released independently does not affect
the production rate. Consequently, in that case, it is not important to distinguish between the
two transfer modes.
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Two-machine FLRMs with no intermediate storage and BAS were analyzed by Rao (1975a)
and Lau (1986a, 1986b). The production rate can be expressed as

P =
1

E[max(S1, S2)]
(33)

where Si denotes the random variable corresponding to the processing time of Machine Mi,
i = 1, 2. Consequently, the problem reduces to that of calculating the expected value of the
maximum of two random variables. Rao (1975a) and Lau (1986a, 1986b) gives explicit expres-
sions for calculating the production rate for different distributions of processing times, especially
exponential, Erlang, uniform, and normal distributions.

For FLRMs with more than two machines we need to distinguish between the two transfer
modes. In the case of synchronous transfer, the analysis is similar. Indeed, the production rate
is now given by P = 1/E[max(S1, ..., SK)]. Again, the problem reduces to that of calculating the
expected value of the maximum of K random variables. In the case of asynchronous transfer,
the analysis is much more complex. The case of three machine flow lines was deeply investigated
by Hunt (1956), Hillier and Boling (1967), Hildebrand (1968), Muth (1973, 1977, 1984), Muth
and Alkaff (1987), Rao (1976a, 1976b).

The approach introduced by Muth (1973) is fairly general. It is based on the analysis of the
holding time distribution at the first machine. The holding time is the total time spent by
a part on this machine. It is the sum of the processing time and possibly some blocking time.
The holding time at Machine M1, H1, can be expressed as (Muth, 1984)

H1 = max(S1, S2, R3) (34)

where R3 is the residual processing time of the part at Machine M3 at the time at which the
next part is transferred from Machine M1 to Machine M2. The production rate can then be
obtained as

P =
1

E[H1]
(35)

Therefore, the problem mainly reduces to that of determining the distribution of R3. Numerical
solutions have been obtained by Muth (1977, 1984) and Rao (1976a, 1976b) for specific distribu-
tions of the processing times. A unifying solution is provided by Muth and Alkaff (1987) under
the following assumptions: Machines M1 and M3 have special phase-type distributions, while
Machine M2 has a Laplace transformable distribution. Unfortunately, it does not seem that the
analysis is extendible to flow lines consisting of more than three machines.

We now turn our attention to FLUMS with no intermediate buffer. First, we note that all
the above results are still applicable provided that processing times are replaced by completion
times. Buzacott (1968) considered the case of flow lines with synchronous transfer, deterministic
processing times and general distributions of uptimes and downtimes. Let T denote the common
processing time of all machines. He obtained the following simple formula for the production
rate

P =
1

T

1

1 +
∑K
i=1

MTTRi
MTTFi

(36)
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This formula was obtained under the following assumption (Buzacott, 1968): if two machines
break down in the same cycle, the total duration of line stoppage is the same as the sum of
stoppage durations of the machines when the machines break down in different cycles. This
formula also holds under the following alternative assumption: when a machine goes down, all
other machines stop their processing; the processing of all machines resumes as soon as the
machine is repaired. Note that this assumption implies that at most one machine may be down
at any time.

When neither of these assumptions satisfied, Buzacott’s formula provides a good approxi-
mation of the exact production rate provided that the times to failures are large compared to
the processing time T (Assumption MTS). For models for which this is not true, Commault and
Dallery (1990) propose a method for calculating the production rate under the assumption that
uptimes are exponentially distributed. It is shown that the analysis reduces to the calculation of
the expected value of the maximum of Coxian distributions. Approximations are also provided.

4.2 Flow Lines with Two Reliable Machines

In this section, we discuss the exact solutions of two-machine FLRMs with finite buffers. In
Section 4.2.1 we describe the relationship between two-machine FLRMs with finite buffers and
single server queues with finite buffers. In Section 4.2.2 we describe exact methods for analyzing
two-machine FLRMs with finite buffers and phase-type distributions of operation times. By
analyzing, we mean calculating the steady state distribution, which can then be used to deter-
mine production rates and other performance measures. This technique is closely related to the
methods described in Section 4.3.

4.2.1 Equivalence of Two-Machine Flow Lines with Finite Queues

In this section, we briefly discuss the equivalence of two-machine flow lines with finite single
server queues (FSSQs). A FSSQ consists of a single server fed by an external arrival process of
customers. There is a finite buffer in front of the server in order to accommodate the customers
that arrive while the server is busy. Let L denote the capacity of the buffer including the space
in front of the server. Thus, L is the maximum number of customers that can be present in the
system, either receiving or waiting for service. We further need to define the behavior when the
queue is full. There are two different assumptions and the corresponding models are referred to
as the lost model and the switch-off model (Buzacott and Kostelski, 1987).

In the lost model, it is assumed that the arrival process is never stopped and that customers
arriving while the queue is full are lost. In the switch-off model, it is assumed that the arrival
process is switched off as soon as the queue is full. The arrival process is restarted at the
instant when a space becomes available in the buffer which occurs when the next service is
completed. Note that in queueing theory, the lost model is usually considered (Kleinrock, 1975).
The lost and switch-off models are not equivalent, in general. However, they are equivalent if
the distribution of the interarrival process of customers is exponential. This follows from the
memoryless property of the exponential distribution (Kleinrock, 1975).

There are equivalences between two-machine flow lines and FSSQs with switch-off arrival
process. Consider first a two-machine line with blocking-before-service and buffer capacity N .
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Then, the behavior of this system is equivalent to the behavior of the following FSSQ with
switch-off arrival process: the interarrival time distribution is the same as the processing time
distribution of Machine M1; the service time distribution is the same as the processing time
distribution of Machine M2; the buffer capacity is L = N . Now, if instead of BBS, the two-
machine line operates under blocking-after-service, then the same equivalence holds provided
that the buffer capacity is L = N + 1.

In summary, by combining the above results, we have the following equivalences: (1) for any
two-machine flow line, there exists an equivalent FSSQ with switch-off arrival; and (2) for any
two-machine line for which the first machine has exponential processing times, there exists an
equivalent FSSQ with lost arrivals. In both cases, the queue capacity is increased by one if BAS
is assumed.

Now, consider the case of a two-machine flow line with exponential and general processing
time distributions for the first and second machines, respectively. As stated above, it is equivalent
to a M/G/1/L queue (Kleinrock, 1975). Consequently, its solution can be obtained as the
solution of the M/G/1/L queue which is based on the analysis of the embedded Markov chain
at departure instants (Cohen, 1982). Note that in the special case where the processing time
distribution of the second machine is also exponential, the analysis reduces to that of aM/M/1/L
queue whose solution has a very simple geometric form. Finally, we note that the case of a two-
machine flow line with general and exponential processing time distributions for the first and
second machines, respectively, can also be analyzed as a M/G/1/L queue using the duality
property of two-machine flow lines (see Section 3.6). Two-machine flow lines of the above types
were analyzed by Rao (1975b).

4.2.2 Analysis of Two-Machine Flow Lines with Phase-Type Distributions

Consider a two-machine FLRMs where the processing time distribution of each machine is given
in the form of phase-type distribution. (Recall that a Coxian distribution is a special case.) Let
PHi refer to the phase-type distribution of Machine Mi, for i = 1, 2, and let si be the number
of phases of PHi. The behavior of such a system can be characterized by a discrete state,
continuous time Markov process. Analyzing this system then reduces to that of calculating the
steady-state probabilities of this Markov process, from which all the performance parameters
can be derived.

Any numerical technique for discrete space Markov processes can in principle be used (Stew-
art, 1978 and 1988; Philippe, Saad, and Stewart, 1989). However, it is helpful to recognize that
the Markov process has a very special structure and to take advantage of it. In the following
presentation, we assume that the blocking mechanism is BBS. However, the type of blocking is
not at all important since we know that in the case of two-machine lines, there is equivalence.
(See Section 3.4.)

The state of the Markov process can be expressed as (n, j1, j2), where n is the number of
parts currently present in the buffer (including the part on Machine M2, if any), and ji is the
current phase of service of Machine Mi, i = 1, 2. n can take on integer values from 0 to N . j1
can take on integer values from 1 to s1, except when Machine M1 is blocked in which case we
set j1 = 0. Similarly, j2 can take on integer values from 1 to s2, except when Machine M2 is
starved in which case we set j2 = 0. Let us partition the state space according to the values of
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n. Let p denote the steady-state probability vector and let pn denote the portion of that vector
that corresponds to a buffer content of n. We can write

p =



p0
p1

.

.
pN


(37)

Note that pn, n = 1, ..., N − 1, is of size s1s2 while p0 and pN are of size s1 and s2, respectively.
Let Q denote the infinitesimal generator of the Markov process. The steady-state prob-

ability vector p of the Markov process is the solution of the equation pTQ = 0; or, equivalently,

QTp = 0. (38)

(In this presentation, we choose to use this equation and therefore we deal with QT .) In addition,
p also satisfies the normalization equation

1Tp = 1. (39)

Matrix QT is a block tridiagonal matrix with the following special structure

QT =



B0 A0 0 . . . 0
C0 B A 0 . . .
0 C B A 0 . .

. . . . . .

. 0 C B A 0

. . 0 C B AN
0 . . . 0 CN BN


(40)

where A, B, and C are square matrices of size (s1s2, s1s2); B0 and BN are square matrices of size
(s1, s1) and (s2, s2); A0, C0, AN , and CN are of size (s1s2, s1), (s1, s1s2), (s2, s1s2), (s1s2, s2).

QT has this special structure because the Markov process associated with a two-machine flow
line is a generalized birth-death process. Transitions can only occur between states that are
neighbors of each other with respect to the value of n. That is, the only possible transitions from
a state (n, j1, j2) are to a state (n′, j′1, j

′
2) such that either n′ = n, or n′ = n− 1, or n′ = n+ 1.

In addition, transition rates are independent of n, for 1 < n < N − 1. Because of the special
block tridiagonal structure of QT , equation (38) can be decomposed into the following set of
equations

B0p0 +A0p1 = 0 (41)

C0p0 +Bp1 +Ap2 = 0 (42)

Cpn−1 +Bpn +Apn+1 = 0 , 1 < n < N − 1 (43)

CpN−2 +BpN−1 +ANpN = 0 (44)



4 EXACT ANALYSIS 36

CNpN−1 +BNpN = 0 (45)

Two solution techniques that make use of the special structure of the matrix QT have received
special attention. They are known as the recursive technique (Herzog, Woo and Chandy, 1975,
Chandy and Sauer, 1981; Stewart, 1988) and the matrix geometric technique (Neuts, 1981).
Recursive and matrix geometric techniques to analyze two-machine FLRMs have been used,
among others, by Altiok and Ranjan (1987), Buzacott and Kostelski (1987), Gun and Makowski
(1987). Another approach, which has only been applied to two-machine FLUM systems, is
described in Section 4.3. There is no reason why this method could not be used for the present
class of systems as well.

The recursive technique can be applied to Markov processes that satisfy the following con-
dition: there exists a subset of states, called the boundary states, such that the probabilities
of all other states can be obtained recursively from the probabilities of the boundary states.
The recursive technique is usually implemented using the following procedure (Buzacott and
Kostelski, 1987). Let k be the total number of states of the Markov process. Determine a subset
of m boundary states satisfying the above condition. Obtain a recursive scheme to derive the
non-boundary state probabilities. This uses k−m equations among the total of k balance equa-
tions. Then, express all non-boundary state probabilities as a linear function of the probabilities
of the boundary states. The coefficient of a particular boundary value in the linear expression
is obtained by setting that boundary value equal to 1 and all other boundary values equal to
0, and then follow the recursive scheme. The remaining m balance equations can then be used
together with the normalizing equation, (39), to determine the probabilities of the boundary
states, from which the other probabilities can then be derived.

It is important to note that the phrase “boundary states” has a different meaning elsewhere
in this paper, and in most of the rest of the literature. Boundary states, as defined here, are
usually a subset of boundary states, as defined in Section 4.3.

Buzacott and Kostelski (1987) applied this recursive technique in the case where each ma-
chine has a Coxian-2 processing time distribution. The states corresponding to an empty buffer
(n = 0) are chosen as the boundary states. In this simple case, there are only two boundary
states: (0, 0, 1) and (0, 0, 2). In the general case of phase-type distributions, the recursive tech-
nique can still be applied, for instance, by considering the states corresponding to a buffer level
of n = 1 as the boundary states.

The principle of the matrix geometric solution can briefly be described as follows (Gun, 1987,
Gun and Makowski, 1987). The first step is to show that the set of transition equations (41) to
(45) can be transformed into an equation of the following form:

Npn +Mpn−1 = 0 (46)

where the matrices N and M are of size s1s2 and N is invertible. Let R be the matrix defined
as R = −N−1M . Then, we have:

pn = Rpn−1 , 1 < n < N (47)

For the boundary states, it is also possible to define matrices S and U such that p1 = Sp0
and pN = UpN−1. The probability vector p0 can be determined by solving an equation of the
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form Zp0 = x. This equation is again obtained from the basic set of equations, (41)-(45). The
remaining probabilities can then be obtained using the above equations. See Gun (1987) and
Gun and Makowski (1987) for more details.

We note that the matrix geometric solution is also based on a recursive scheme and so it
has relationships with the recursive technique described above. Buzacott and Kostelski (1987)
compared these two techniques in the case of Coxian-2 distributions. They showed that both
techniques can be subject to numerical problems when N is large.

We note that probabilities at specific points in time, especially completion instant prob-
abilities, can be derived from the steady-state probabilities; see, e.g., (Gun and Makowski,
1989). Such probabilities are useful when using decomposition methods (Section 5.1). Finally,
we note that similar analyses can be done in the case of discrete phase-type distributions; see
e.g., Gun (1987). In that case, the underlying model is a discrete time Markov process.

4.3 Flow Lines with Two Unreliable Machines

In this section, we discuss the exact solutions of two-machine FLUMs with finite buffers. These
systems are modeled as Markov processes with discrete states and continuous times (Sec-
tion 4.3.1), as Markov processes with discrete states and discrete times (Section 4.3.2), and
as Markov processes with mixed states and continuous times (Section 4.3.3).

4.3.1 Asynchronous Models

Each of the models in this section is described as a Markov process with continuous time and
discrete state. The state (n, α1, α2) represents the number of parts in the buffer (n) and the
condition of the machines (α1 and α2). Most often, αi can take on two values, which we may
represent as 1 for operational (up) and 0 for under repair (down). When there are more than
one failure mode, or when processing times, uptimes, or downtimes are represented by Coxian
or phase-type random variables, or when other states (especially idle) are included, αi takes on
more than two values. In fact, it is possible to combine a Coxian model of operation time and
a Coxian model of failure, and apply the methods of Section 4.2.2 and this section to it. The
present models are not essentially different from those of the earlier section; αi here is the same
as ji there.

As in Section 4.2.2, p is the steady-state probability distribution vector. The components
of p are p(n, α1, α2). Let pn be the portion of that p that corresponds to a buffer content of
n. The dimensionality of pn depends on the number of different values of α1 and α2. When
they can take on two values, the usual case in the literature, the dimensionality of pn is 4. In
that case, the dimensionality of p is roughly 4(N + 1), since n can take on integer values from
0 to N . (We say “roughly” because there may be additional states for idle when the buffer is
empty or nearly empty or full or nearly full; or there may be additional states when the buffer
is full or nearly full for the piece in the machine’s work area for BAS systems; or there may
be fewer states if transient states are eliminated. Transient states appear when the buffer is
empty or nearly empty or full or nearly full.) p can be written (37) and it satisfies (38) (with
an appropriate Q) and (39).

As in Section 4.2.2, it is useful to distinguish between internal states and equations and
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boundary states and equations. The latter refers to cases when the buffer is empty or nearly
empty or full or nearly full. For some models, the boundary consists only of states in which
n = 0 and n = N (in which case (42) and (44) are exactly the same as (43)); other models also
include n = 1 and n = N − 1. Internal states are all states that are not on the boundary. This
terminology comes from differential equations, and some of the solution techniques described
below have been influenced by differential equation methods.

Also as in Section 4.2.2, this system is a generalized birth-death process, and pn satisfies (41)-
(45). The approach taken in the two-machine FLUM literature is to satisfy (43) by assuming
the following analytic expression for p(n, α1, α2) when n is internal:

p(n, α1, α2) =
∑
j

DjX
n
j φj(α1, α2) (48)

for some scalars Dj and Xj and some scalar functions φj (although not all authors write the
solution in this form). Equation (48) can also be written

pn =
∑
j

DjX
n
j φj (49)

where φj is the vector whose components are φj(α1, α2).
Equation (48) follows from (43) when

pn = Rnφ. (50)

is a solution of (43) for some matrix R and vector φ. Yeralan and Muth (1987) demonstrate
conditions for this to hold. They call this the matrix geometric property. Substituting (50)
into (43):

ARn+1φ+BRnφ+ CRn−1φ = 0 (51)

or,

(AR2 +BR+ C)Rn−1φ = 0 (52)

so (43) is satisfied if R satisfies

AR2 +BR+ C = 0. (53)

Let X1, ..., Xl be the eigenvalues of R, and φ1, ...,φl be the corresponding eigenvectors. If
we write

φ = D1φ1 + ...+Dlφl, (54)

then

Rφ = D1X1φ1 + ...+DlXlφl, (55)

and similarly,
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pn = Rnφ = D1X
n
1φ1 + ...+DlX

n
l φl, (56)

which is equivalent to (48). When the summation has only one term, Yeralan and Muth (1987)
call this the scalar geometric property. The coefficients D1, . . . , Dl and the boundary prob-
abilities are determined by satisfying the transition equations on the boundary (i.e., (41), (42),
(44), and (45), and the normalization equation (39)).

As a consequence of this, all performance measures are functions of XN
j . As indicated earlier,

in all papers in which production rate is evaluated as a function of buffer size, it is a saturating
function of storage space. This upper bound is the production rate of the slower — in the sense
of isolated production rate — of the two machines.

Buzacott (1972) describes a two-station model with a finite buffer in which the machines are
identical. Both the operation times and repair times are exponentially distributed. There is a
constant probability of failure during each operation. Consequently, they occur according to a
geometric distribution of the number of operations since the last failure. Note that this means
that he assumes number-ODFs. A close study of the transition equations suggests that this
is a blocking-after-service model. He obtains an exact solution of the model, using generating
functions (i.e., z-transforms). This solution is equivalent to (48) with one or two terms. He also
shows an approximate relationship between this model and (I) an exponential model with no
failures and (II) his deterministic processing time model (Buzacott, 1967a and b). His numerical
results demonstrate that production rate is a saturating function of storage space. Sastry (1985)
obtained an analytical solution using the method of Gershwin and Berman (1981).

Gershwin and Berman (1981) study the two-machine system in which processing times, times
to failure, and times to repair are all exponentially distributed. The model differs from that
of Buzacott (1972) in that failure is represented by an exponential distribution in time rather
than a geometric distribution in the number of parts produced. Note that this means that they
assume time-ODFs. They obtain analytic solutions when the machines differ, and they prove
that the model satisfies conservation of flow. The solution technique involves specifying (48)
for pn for internal states (1 ≤ n ≤ N − 1), and developing other expressions for boundary
states (n = 0 or n = N). They demonstrate that the summation in (48) has four terms, but
one of them (corresponding to X = 1) has coefficient D = 0. They also obtain some results
on the limiting behavior of the system as some of the machine parameters approach 0 or ∞.
These results, which characterize the effects of bottlenecks in the system, show that the model
is consistent with intuition.

Berman (1982) generalizes the Gershwin and Berman (1981) model by allowing processing
times to have Erlang distributions. He also proves conservation of flow and generalizes the
limiting results. In numerical examples, the graphs of production rate as a function of machine
parameters appear to be increasing, saturating functions (except, of course, for production rate
as a function of failure rate), but they appear to be non-convex. Both the Gershwin and Berman
(1981) and the Berman (1982) models assumed blocking before service.

Sastry (1985) formulates a two-machine transfer line model in which each machine is subject
to the two types of ODFs: time- and number-ODFs. One mode operates according to Buzacott’s
(1972) mechanism and the other is based on Gershwin and Berman’s (1981). The boundary
equations suggest that the system is a blocking-before-service model. Sastry obtains an analytic
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solution following Gershwin and Berman’s technique.
Sastry (1985) and Sastry and Awate (1988) study a second extension of Gershwin and

Berman’s (1981) model by including inspection and rework. A part is inspected after its op-
eration is completed, but while it is still on the machine. If it fails inspection, it is processed
again, until it passes inspection. Inspection time is assumed exponentially distributed. Machine
failures are allowed during both operation and inspection phases. This system is also a blocking-
before-service model. Again, Gershwin and Berman’s technique is used to generate an analytic
solution.

4.3.2 Synchronous Models

Each of the papers in this section models a flow line as a Markov process with discrete time and
discrete state. As in Section 4.3.1, the state (n, α1, α2) represents the number of parts in the
buffer and the condition of the machines. The approach is similar to the case of asynchronous
systems except that one has to deal with a stochastic matrix instead of the infinitesimal gener-
ator. Equations similar to (41)-(45) and (48) for pn are valid here, performance measures are
still functions of XN

j , and production rate is still a saturating function of storage space.
Buzacott’s early papers, (1967a and b, 1969), while not the first to focus on flow lines,

were possibly the most influential. They covered a great many topics, including several models
of synchronous flow lines. In the exact two-machine analyses, both the failure and the repair
processes are geometric or deterministic. He simplifies his transition equations by assuming
that the probability that two events happen during the same cycle is negligible. He relaxed
this assumption later in Buzacott and Hanifin (1978a). The blocking behavior is evidently
blocking-after-service, since failures are allowed when the buffer is full.

Analytic solutions of special cases of the models appear in Buzacott (1967a). The solution
of the geometric-repair-time-geometric-failure-time line is of the form of equation (48) (with a
single term); the solution of the constant-repair-time-geometric-failure-time line may also be
of that form, but it is rather complicated. Numerical examples show that the production rate
for constant-repair-time-geometric-failure-time lines is greater than for geometric-repair-time-
geometric-failure-time lines. In both models, production rate is a saturating function of buffer
size. A more general model is also described in Buzacott (1967a): one with general repair time
distributions. Because of the influence of Buzacott’s work, we refer to synchronous geometric-
repair-time-geometric-failure-time flow models as Buzacott-type models in the rest of the
paper.

Okamura and Yamashina (1977) formulated a Buzacott-type model and solved it numeri-
cally. (It is not clear whether it is a blocking-before-service or blocking-after-service model.)
They perform an extensive set of numerical experiments to explore the behavior of performance
measures (production rate and average buffer level) as a function of system parameters (failure
and repair probabilities and buffer size). Production rate is always a saturating function of
buffer size. The shape of the average-buffer-level vs. buffer size curve depends on the relative
values of the machine parameters.

Artamonov (1977) studied a two-machine line with deterministic processing time and geo-
metric repair and failure times — a model similar to Buzacott’s. Without making Buzacott’s
approximating assumption (that the probability of two events during the same cycle is negligi-
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ble), he obtains a solution in the form of equation (48) with one term. Dudick (1979), Schick
and Gershwin (1978), and Gershwin and Schick (1983) obtained essentially the same solution
of the same system. (According to Liu (1990), the Gershwin-Schick model with a buffer of size
N is close to the Buzacott model with a buffer of size N − 2.) Schick and Gershwin (1978) also
observed (43) and (50) and demonstrated (9) and conservation of flow (13). In their numerical
experiments, they showed the saturation curve for production rate vs. buffer size, and they
investigated the shape of the average buffer level vs. buffer size curve. Based on equation (48)
(in which there is only a single term), they showed that if the first machine is slower than the
second (in the sense of isolated efficiency) the average buffer level approaches a limit as the buffer
size increases without limit. The same approach could have been used to demonstrate that, if
the first machine is faster than the second, the average buffer level is unbounded as the buffer
size increases without limit. (In fact, the part/hole duality of Section 3.6 can be used to show
that the difference between the buffer size and the average buffer level approaches a constant.)
Finally, Schick and Gershwin’s approach could also have shown that if the two machines have
r1 = r2 and p1 = p2, then the average buffer level is a constant fraction — half — of the buffer
size.

Yeralan and Muth (1987) present a very general view of the two-machine transfer line.
Although they assumed synchronous transfers, their approach should work equally well for
asynchronous systems. By observing (43), they established a relationship with Neuts’ (1981)
matrix geometric systems. They demonstrated some very simple, general formulas for production
rate and average buffer levels that are functions of the matrices in (43) as well as others that
describe the blocked and starved behavior of the system. This allowed them to compare very
easily a set of systems based on very different assumptions (concerning operating policy, the
number of repair personnel, etc.). This work provides an important unifying view of these
models. It may be thought of as a summary and generalization of all the previous literature on
two-machine synchronous transfer lines with finite buffers.

Other work on synchronous models is described in Section 4.4.

4.3.3 Continuous Flow Models

Each of the models in this section is described as a Markov process with continuous time and
mixed state (i.e., with both discrete and continuous components). The state (x, α1, α2) repre-
sents the amount of material in the buffer (x) and the condition of the machines (α1 and α2).
The major feature of the continuous model is that the quantity x is a real number. As in dis-
crete state models, αi usually takes on two values, which we represent as 1 for operational and
0 for under repair. This is the case when uptimes and downtimes are exponentially distributed.
Phase-type distributions would lead to models in which αi would take on more than two values.
See De Koster (1988a).

In these systems, the boundary is the set of states where x = 0 or x = N , and all other
states are internal. The steady state is described by a probability density function in the
interior and probability masses on the boundary. Let the density be given by f(x, α1, α2). That
is, f(x, α1, α2)δx is the probability that the machine states are α1 and α2 and the amount of
material in the buffer is between x and x+ δx. The masses are p(0, α1, α2) and p(N,α1, α2) for
some α1 and α2. There are masses at x = 0 and x = N because sometimes, when the buffer
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becomes empty, it remains empty until a repair or failure, and sometimes, when the buffer
becomes full, it remains full until a repair or failure.

Because f(x, α1, α2) is a function of a continuous variable, it satisfies a set of differen-
tial, rather than difference equations. If we define f(x) as the vector whose components are
f(x, α1, α2), these equations can be written

df

dx
= Af (57)

where A is a matrix. This equation is analogous to (43). The solution to (57) can be written as
a matrix exponential, or, more usefully, as

f(x, α1, α2) =
∑
j

Dje
Cjxφj(α1, α2) (58)

This expression is analogous to (48). The only difference is one of notation: now eCj takes the
place of Xj . To complete the model, one must define the behavior when the buffer is empty and
full. This leads to probability masses because the probabilities of finding the buffer empty or
full are non-zero.

There is an important qualitative difference, in this class of models, between systems in
which the machines operate at the same speed when they are operational, and systems in which
the machines operate at different speeds when they are operational. This is because, when the
machines operate at the same speed, the buffer level stays constant while both machines are
up. However, if the machines operate at different speeds, the buffer level changes while they are
both up, and the buffer can become empty or full (depending on which machine is faster).

In systems with machines of different speeds and operation dependent failures (ODFs), the
boundary conditions depend on the cause of the buffer becoming empty or full. For example,
if the first machine is slower than the second, the buffer will frequently be empty. However,
this is different from a failure of the first machine because the second machine can still operate.
It is slowed down and operates at the speed of the first machine. This is less than its normal
rate, so if its failures are operation dependent, it ought to fail less often than otherwise (see the
discussions in Sections 2.3 and 3.8.1). As a consequence, the boundary conditions of (57) are
affected.

Zimmern (1956) was one of the first papers in the transfer line literature, and is still not as
widely known as it deserves to be. Perhaps this is because it is based on the continuous material
flow assumption, whereas the more fashionable models are based on discrete material. Like most
papers in this section, Zimmern (1956) assumes exponentially distributed up and down times.
The two machines can be completely different, so seven parameters are required to describe the
system: the operating speeds, the MTTF’s, and MTTR’s of the machines, and the buffer size.
Zimmern assumes time dependent failures. (As a result, when one machine is slowed down by
the other, he does not adjust the failure rate.) Among other things in this rich paper, equation
(57) is presented in detail, along with a discussion of boundary conditions, a complete solution,
and a graph of production rate vs. buffer size that demonstrates the saturation shape.

Sevast’yanov (1962) analyzed a two-machine continuous material system with exponentially
distributed failure and repair times. He assumed that all machines operated at the same rates
and had equal repair rates. He obtained an analytic solution and extended it to an approximation
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for longer lines which is described in Section 5.2.1. He assumed time-dependent failures (TDF)
and that only one machine in a line is allowed to be down at once.

Winjgaard (1979) formulated the problem differently. His system is essentially the same
as Zimmern’s. However, instead of determining a steady state probability distribution and
calculating performance measures from it, he postulates a cost for being in each state, and
evaluates the average value of the cost. The production rate is found by choosing the cost
functions appropriately.

Gershwin and Schick (1980) formulated a model similar to Zimmern’s (1956). However, they
assumed ODFs instead of TDFs. Moreover, they assumed that the failure rate of a slowed down
machine was proportional to the speed that it operated at. See Section 3.8.1. They obtained a
complete solution, and evaluated the average in-process inventory. They also investigated the
relationship between two-machine synchronous models with geometrically distributed up- and
down-times and continuous material models with exponentially distributed up- and down-times.
They found conditions under which one would be a good approximation for the other. See
Section 3.8.2. A similar study was performed by Dubois and Forestier (1982). They obtain
the usual saturation curve for production rate as a function of buffer size. They also verified
Okamura and Yamashina’s (1977) observations on average buffer level.

Glassey and Hong (1986a) also analyze a continuous model with ODFs. However, as op-
posed to Gershwin and Schick (1980) and Dubois and Forestier (1982), they did not reduce the
failure rate of a slowed down machine. This is not consistent if the model is to be used as an
approximation of an asynchronous model (see Section 3.8.1).

De Koster (1989a) shows that continuous models with general up- and downtimes can also
be handled provided that the distributions are of phase-type. However, the analysis becomes
much more complex.

4.4 Longer Lines

Sheskin (1974, 1976), and Soyster, Schmidt, and Rohrer (1979) studied Buzacott-type syn-
chronous models in which, for each machine, ri + pi = 1. With this restriction, the probability
that a machine is down in any time step is pi, independent of its state in the previous time
step. This allowed the transition equations to be solved more easily for systems with more than
two machines, and allowed Soyster, Schmidt, and Rohrer (1979) to obtain bounds on produc-
tion rate. The consequences of this restriction were studied further by Lim, Meerkov, and Top
(1990), Lim and Meerkov (1990), and Top (1990) when all pi are small. Under this condition,
easily computable asymptotic results can be obtained.

Buzacott (1967a) extended his two-machine synchronous system equations to a three-machine
transfer line with geometric up-times and general, but identical, repair time distributions. He
approximated the probabilities — and reduced the number of equations — by assuming that
two or more machines would not be down at the same time. Because the problem was still too
large to treat practically, he further specialized it to a system with equal deterministic repair
times, in which the buffer sizes were small integer multiples of the repair time. (In the course of
this, he observed a symmetry which was later studied in a more general context: if the buffers
are the same, and the first and third machines are identical, then the probability of n1 in the
first buffer and n2 in the second is the same as the probability of N − n1 in the first buffer and
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N − n2 in the second.)
Gershwin and Schick (1983) attempted to extend their analytic solution of the two-machine

Buzacott model to three machines. To do this, they had to extend the analysis of internal states,
which was easy, and the analysis of boundary states, which was hard. A state is on the boundary
if one or more of the buffers is on the boundary, as defined above for single-buffer systems. They
analyzed the internal states by extending (48). This satisfied all the internal transition equations.
However, the extension to the boundary did not satisfy all the boundary equations. The number
of equations that remained was linear in the buffer sizes, and that many linear equations would
have to be satisfied by some general method. As a result, the reduction in computational effort
was not great enough to solve three-machine systems with large buffers. More generally, this
kind of method would reduce the computational effort of solving a K-machine line to that of
solving a K − 1-machine line by some general linear equation method. This is not enough of
a reduction to be practical. Wiley (1981) made a more sophisticated attempt to extend the
Gershwin-Berman (1981) technique to a three-machine asynchronous line. He developed an
eigenvalue-like technique that allowed him to transform the boundary equations to a smaller
set of equations. However, he was only able to reduce the number of equations by a factor of
approximately 2 in the three-machine case, and this does not suggest greater savings for larger
systems.

Zimmern (1956) stated the internal partial differential equations for the continuous material
long line. Coillard and Proth (1984) formulated and solved a three-machine continuous material
flow model in which all the machines are identical.

Finally, we note that any asynchronous flow line model (with or without failures) can be
described as a discrete space continuous time Markov process, provided that all distributions
are given under phase-type forms. Thus, in principle, they can be analyzed by solving the
steady-state probability vector equation, (38), using any appropriate numerical technique, es-
pecially iterative techniques (Stewart, 1978; Philippe, Saad and Stewart, 1989). Alternatively,
the matrix-geometric approach of Neuts may be applied (Neuts, 1981). However, the number of
states of the Markov chains grows very fast with the number of machines, the buffer capacities,
the number of phases of the distributions. As a consequence, only models of limited sizes are
tractable. A similar statement applies to synchronous models. Studies along this line include
the work of Altiok and Stidham (1983), Onvural, Perros, and Altiok (1987), and Fanti, Maione,
Peluso, and Truchiano (1987).

5 Approximate Analysis

It appears from Section 4 that exact solutions of two-machine flow lines (either FLRMs or
FLUMs) are available for a wide range of models. However, it seems hopeless to expect to
obtain exact solutions of flow lines with more machines even when more powerful computers are
available. The work on three-machine lines reviewed in Section 4.4 involves models that are not
tractable, or are subject to numerical problems, or are too limited to be of interest. Therefore,
the use of approximate solutions is the only viable alternative. The purpose of this section is to
review the literature devoted to approximate methods.

Most approximate methods are based on decomposition. The common idea is to decompose



5 APPROXIMATE ANALYSIS 45

the analysis of the original model into the analysis of a set of smaller subsystems which are easier
to analyze. Each decomposition method involves three steps: (1) characterizing the subsystems;
(2) deriving a set of equations that determines the unknown parameters of each subsystem; and
(3) developing an algorithm to solve these equations. The aim of the first step is to define how the
original line is decomposed into subsystems and to characterize each subsystem. The subsystems
must have exact solutions. The purpose of the second step is to establish relationships between
quantities pertaining to different subsystems so that the parameters of each subsystem can be
derived from the parameters and performance measures of other subsystems. In general, the set
of equations can be expressed in the following form:

x = F (x) (59)

where x denotes the vector of unknown parameters. In other words, the problem of determining
the unknown parameters reduces to that of finding a vector x that satisfies the fixed-point
equation (59). Thus, the third step usually consists of deriving an iterative procedure of the
following type:

x(j) = F (x(j−1)) (60)

where x(j) is the estimate of x at the j’th step of the iteration procedure.
Most decomposition methods in the literature decompose a K-machine flow line into a set of

K−1 subsystems, each subsystem being associated with a buffer of the original line. Decomposi-
tion methods are approximations because (1) the subsystems are always simpler than the whole
line, and so cannot exhibit the same behavior; and (2) some of the equations used to determine
the parameters may be approximate, even within their assumptions. In decomposition methods,
there is a trade-off between complexity and accuracy. Indeed, a more complex characterization
of subsystems will generally lead to a better approximation of the behavior of the original line
and, as a result, to more accurate results. However, obtaining the exact solution of subsystems
will also be more complex and, since each subsystem must usually be solved several times, the
overall computational complexity will be greater.

Decomposition methods have been designed either for FLRMs or for FLUMs. The basic
principles of decomposition methods were devised by Zimmern (1956) and Sevast’yanov (1962)
in the context of FLUMs, and by Hillier and Boling (1967) in the context of FLRMs. Since
then, much work has been devoted to approximate methods. Sections 5.1 and 5.2 describe the
literature of decomposition methods dedicated to FLRMs and FLUMs, respectively.

5.1 Flow Lines with Reliable Machines

5.1.1 Decomposition

As stated above, most decomposition methods decompose the original flow line with K machines
into a set of K−1 subsystems, each subsystem being associated with a buffer of the original line.
In some methods the subsystem is a two-machine line while in others the subsystem consists of
a single server queue with a finite buffer. Because of the equivalences between two-machine lines
and FSSQs discussed in Section 4.2.1, there are no major differences between these choices.
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We first describe the principle of decomposition methods that decompose the original K
machine (FLRM) line into a set of K − 1 two-machine (FLRM) lines (Altiok and Ranjan, 1987;
Dallery and Frein, 1989a; Gun and Makowski, 1989). Each two-machine line is associated with a
buffer of the original line. Let L denote the original line and let L(i, i+1) denote the two-machine
line associated with buffer Bi,i+1. Except for the names of the buffers Bi,i+1, we use parentheses
to refer to objects and parameters of the two-machine lines. Moreover, we use subscripts u
and d to refer to objects and parameters of the upstream and downstream machines. Machine
Mu(i, i + 1) is the upstream machine of line L(i, i + 1), and Md(i, i + 1) is the downstream
machine.

The basic idea of decomposition is to define upstream and downstream machines for each
two-machine line L(i, i + 1) such that the behavior of material through its buffer is close to
the behavior of material in buffer Bi,i+1 in line L. That is, an observer in the buffer of line
L(i, i + 1) would see almost the same arrivals and departures, starvations and blockages, and
buffer level dynamics as an observer in the buffer of the original line. In other words, upstream
and downstream machines of each two-machine line summarize the effects of the entire upstream
portion of the line and the entire downstream portion of the line, respectively, on the buffer. For
instance, Machine Mu(i, i+ 1) represents in an aggregate way the portion of line L upstream of
Buffer Bi,i+1, that is, Machine M1 to Machine Mi. Similarly, Machine Md(i, i + 1) represents
in an aggregate way the portion of line L downstream of Buffer Bi,i+1, that is, Machine Mi+1

to Machine MK . These machines are sometimes called equivalent machines (although they
are not exactly equivalent), pseudo-machines, or virtual machines. Exact solutions of the
subsystems can be obtained using an appropriate technique among those discussed in Section
4.2.

This decomposition approach is expressed symbolically in Figure 4. Note that two pseudo-
machines correspond to each real machine (other than the first and last). Indeed, Machine
Md(i−1, i) in Line L(i−1, i) and Machine Mu(i, i+1) in Line L(i, i+1) correspond to Machine
Mi. For the behavior of each subsystem to closely match that of the corresponding portion of
the line, it is reasonable to assume that (1) the capacity of the buffer of each subsystem is the
same as that of the corresponding buffer of the original line; (2) the type of blocking (BAS or
BBS) of the subsystems is the same as that of the original line.

Alternatively, some methods decompose the original K-machine line into a set of K−1 finite
single server queues (FSSQs), e.g. Altiok (1982), Hillier and Boling (1967), Perros and Altiok
(1986), Takahashi, Miyahara, and Hasegawa (1980). In this approach, the idea is to determine
the arrival process and service process such that the behavior of material in the buffer closely
approximates that of the corresponding buffer in the original line. Let Q(i, i + 1) denote the
FSSQ associated with Buffer Bi,i+1. The arrival process of Q(i, i+ 1) models the portion of line
L upstream of Buffer Bi,i+1 while the service process models the portion of line L downstream
of Buffer Bi,i+1.

Because of the equivalences reported in Section 4.2.1, this approach is equivalent to decom-
posing the line into a set of two-machine lines provided that (1) a switch-off arrival process is
assumed, and (2) the buffer capacity of Q(i, i+ 1) is Ni,i+1 in the case of BBS and Ni,i+1 + 1 in
the case of BAS. We note that the assumptions considered in the papers that use this approach
may differ from these assumptions. A discussion of this issue is provided at the end of this
section.
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Figure 4: Flow Line Decomposition
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In the following, because of the above equivalence, we only use the two-machine line decompo-
sition approach. Also, since most methods are devoted to flow lines with blocking-after-service,
we restrict our attention to this case. Decomposition methods for flow lines with blocking-
before-service are based on similar approaches, although the detailed analysis is slightly differ-
ent; see Gun and Makowski (1989). A unified view of decomposition methods for flow lines
with blocking-after-service has been presented by Dallery and Frein (1989a). The following
presentation is based on this unified view.

Consider the decomposition of a K-machine flow line with BAS into K − 1 two-machine
lines. Let fi denote the probability density function (PDF) of the processing time of Machine
Mi. Consider Subsystem L(i, i+1). It has buffer capacity N(i, i+1) = Ni,i+1 and operates under
blocking-after-service. We define the following quantities pertaining to Subsystem L(i, i + 1).
Let fu(i, i+ 1) and fd(, i+ 1) denote the PDFs of the processing times of Machines Mu(i, i+ 1)
and Md(i, i+1), respectively. Let Tu(i, i+1) and Td(i, i+1) denote the average processing times
of Machines Mu(i, i+ 1) and Md(i, i+ 1), respectively.

We also need to consider quantities related to the blocking of Machine Mu(i, i + 1) and to
the starvation of Machine Md(i, i + 1). Let BC

u (i, i + 1) denote the probability that Machine
Mu(i, i+1) is blocked at the instant of completion of the processing of a part. Also, let gCd (i, i+1)
be the PDF of the residual processing time of Machine Md(i, i+1) at this instant. BC

u (i, i+1) is
referred to as the completion-instant blocking probability. Similarly, let SCd (i, i+1) denote
the probability that Machine Md(i, i+1) is starved at the instant of completion of the processing
of a part, and let gCu (i, i+1) be the PDF of the residual processing time of Machine Mu(i, i+1) at
this instant. SCd (i, i+1) is referred to as the completion-instant starvation probability. We
add the superscript C to emphasize that these quantities are related to special instants in time,
namely the instants of processing completions. The completion-instant blocking probability
BC
u (i, i+ 1) is not, in general, equal to the steady-state blocking probability Bu(i, i+ 1).

The first step of the decomposition method is to characterize the upstream and downstream
servers. The processing time distribution of each machine can be characterized by exponential
distributions or phase type distributions (including Coxian distributions as a special case). For
a given characterization, the problem is to determine the parameters of the upstream and down-
stream machines of all subsystems. First, we note that Machine Mu(1, 2) represents the portion
of the line upstream of Buffer B1,2, which consists of only Machine M1. Therefore, Machine
Mu(1, 2) must be identical to Machine M1. By a similar argument, Machine Md(K−1,K) must
be identical to Machine MK . Thus, we have the following boundary conditions:

fu(1, 2) = f1 and fd(K − 1,K) = fK (61)

In order to determine the remaining 2(K − 2) machines, three major sets of equations can
be used. The first set of equations is related to the service process of the downstream machines
of the two-machine lines. Consider, for instance, Machine Md(i, i+ 1) in Line L(i, i+ 1). Since
Machine Md(i, i+1) represents the portion of line L downstream of Buffer Bi,i+1, the processing
time of Machine Md(i, i+1) represents the time between the instant of beginning of a processing
of a part on Machine Mi+1 and the instant of the transfer of the part into Buffer Bi+1,i+2. This
time is composed of the processing time followed by a blocking time if Buffer Bi+1,i+2 is full at
the instant of processing completion. The blocking of Machine Mi+1 in Line L is represented by
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the blocking of Machine Mu(i+1, i+2) in Line L(i+1, i+2). Thus, the probability that Machine
Mi+1 is blocked at instant of completion of a part is approximated by the completion-instant
blocking probability BC

u (i+ 1, i+ 2) of Machine Mu(i+ 1, i+ 2) in Line L(i+ 1, i+ 2), and the
blocking time is approximated by the residual service time of Machine Md(i + 1, i + 2) at the
instant at which blocking occurs. Consequently, with probability 1 − BC

u (i + 1, i + 2), there is
a zero blocking time, and with probability BC

u (i + 1, i + 2), there is a non-zero blocking time
whose PDF is gCd (i+1, i+2). Therefore, the PDF of the processing time of Machine Md(i, i+1)
can be expressed as

fd(i, i+ 1) = fi+1 ∗
(
(1−BC

u (i+ 1, i+ 2)) 0f + BC
u (i+ 1, i+ 2) gCd (i+ 1, i+ 2)

)
,

i = 1, · · · ,K − 2 (62)

where ∗ denotes the convolution operator and 0f denotes the PDF of the distribution of the
random variable that is equal to 0 with probability 1. This equation will be referred to as the
blocking propagation equation.

A similar set of equations is related to the service process of the upstream machines of the
two-machine lines. Consider Machine Mu(i, i+ 1) in Line L(i, i+ 1). Since Machine Mu(i, i+ 1)
represents the portion of line L upstream of Buffer Bi,i+1, the processing time of Machine
Mu(i, i + 1) represents the time between the instant of transfer of a part into Buffer Bi,i+1

and the instant of the processing completion of the next part on Machine Mi. This time is
composed of a starvation time, if Buffer Bi−1,i is empty at the instant of transfer, followed by a
processing time. A starvation of Machine Mi in Line L is represented by a starvation of Machine
Md(i − 1, i) in Line L(i − 1, i). Thus, the probability that Machine Mi is starved at instant of
transfer of a part is approximated by the completion-instant starvation probability SCd (i−1, i) of
Machine Mu(i− 1, i) in Line L(i− 1, i), and the starvation time is approximated by the residual
service time of Machine Mu(i−1, i) at the instant at which starvation occurs. Consequently, with
probability 1−SCd (i−1, i), there is a zero starvation time, and with probability SCd (i−1, i), there
is a non-zero starvation time whose PDF is gCu (i − 1, i). Therefore, the PDF of the processing
time of Machine Mu(i, i+ 1) can be expressed as:

fu(i, i+ 1) =
(
1− SCd (i− 1, i)) 0f + SCd (i− 1, i) gCu (i− 1, i)

)
∗ fi ,

i = 2, · · · ,K − 1 (63)

This equation will be referred to as the starvation propagation equation.
If we had considered blocking-before-service, the form of equation (62) would have been

slightly different. This is because, in the case of BBS, blocking occurs before the processing
starts whereas in the case of BAS, it occurs at the end of the processing. Actually, the form of
equation (62) would have been similar to that of equation (63). This is simply because of the
duality of starvation and blocking-before-service discussed in Section 3.6.

The third set of equations is related to the departure process from Machine Mi. A departure
from Machine Mi occurs at the instant at which a part is transferred from Buffer Bi−1,i into
Buffer Bi,i+1. The departure process from Machine Mi in line L corresponds to the departure
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process of Machine Md(i− 1, i) in Line L(i− 1, i) and also to the departure process of Machine
Mu(i, i + 1) in Line L(i, i + 1). Consequently, these two processes should be identical. Let
hd(i−1, i) and hu(i, i+1) denote the PDFs of the interdeparture times from Machine Md(i−1, i)
and Machine Mu(i, i+ 1), respectively. Thus, we have:

hd(i− 1, i) = hu(i, i+ 1) , i = 2, · · · ,K − 1 (64)

This equation will be referred to as the departure process equation.
The above equations are sometime used in simpler forms that involve only the means of the

distributions. This is because when an exponential characterization is used for certain machines,
its distribution is totally determined by a single parameter (the mean). Consider first the case
where the downstream machines are characterized by exponential distributions. Then, using
the memoryless property of the exponential distributions, it is easy to show that equation (62)
implies:

Td(i, i+ 1) = Ti+1 + BC
u (i+ 1, i+ 2) Td(i+ 1, i+ 2) , i = 1, · · · ,K − 2 (65)

Similarly in the case where the upstream machines are characterized by exponential distri-
butions, equation (63) implies:

Tu(i, i+ 1) = SCd (i− 1, i) Tu(i− 1, i) + Ti , i = 2, · · · ,K − 1 (66)

(Recall that Ti, Td(i, i + 1), and Tu(i, i + 1) are the average processing times of Machines Mi,
Md(i, i+ 1), and Mu(i, i+ 1), respectively.)

Consider equation (64). By just considering the means of the distributions, this equation
implies that the average interdeparture time from Machines Md(i− 1, i) is equal to the average
interdeparture time from Mu(i, i+ 1). The average interdeparture time from a machine is equal
to the inverse of its production rate. Thus, if Pd(i− 1, i) and Pu(i, i+ 1) denote the production
rates of Machines Md(i− 1, i) and Mu(i, i+ 1), respectively, we have:

Pd(i− 1, i) = Pu(i, i+ 1) , i = 2, · · · ,K − 1 (67)

Because of the conservation of flow through each two-machine line (equation (13)), i.e. Pd(i, i+
1) = Pu(i, i+ 1) = P (i, i+ 1), this equation can simply be written as:

P (i− 1, i) = P (i, i+ 1) , i = 2, · · · ,K − 1 (68)

Equation (68) means that all subsystems should have the same production rate. Thus, any
approximate method that uses this equation will be consistent with the basic conservation of
flow relationship, equation (13).

We note that equation (68) holds for any characterization of both the upstream and the
downstream machines, whereas equation (65) (resp. (66)) holds provided that the distributions
of downstream (resp. upstream) machines are exponential. Equations (65), (66), and (68) will
be referred to as the simpler version of equations (62), (63), and (64), respectively.

These equations (or their simpler versions) can be combined to determine the distributions
of the processing times of the upstream and downstream machines. As shown by Dallery and
Frein (1989a), there are three main approaches. A first set of equations, called SE1, is obtained
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by combining equations (62) and (64). A second set of equations, referred to as SE2, is obtained
by combining equations (63) and (64). Finally, a third set of equations, SE3, is obtained by
combining equations (62) and (63).

It is important to notice that (1) System SE2 is the dual of System SE1 in the sense that
SE1 uses the blocking propagation equation while System SE2 uses the starvation propagation
equation; (2) any solution of SE1 (or SE2) satisfies conservation of flow since equation (64)
implies equation (68); (3) System SE3 offers a symmetrical view of the decomposition since
both the blocking and the starvation propagation equations are involved. It was proved by
Dallery and Frein (1989a) that these three systems of equations are equivalent. A consequence
of this result is that any solution of System SE3 will satisfy conservation of flow, although this
equation is not explicitly involved in SE3.

To solve any of these three systems of equations, an iterative procedure must be used. The
procedure must be appropriate for the system of equations that is chosen. There are three
major types of algorithms, referred to as Algorithms A1, A2, and A3, which are associated with
Systems SE1, SE2, and SE3, respectively. However, slightly different algorithms can be used
for a given system of equations. (See Dallery and Frein (1989a), for more details).

An approach of type SE1 was used, among others, by Altiok (1982), Perros and Altiok
(1986), Pollock, Birge, and Alden (1985), and Takahashi, Miyahara, and Hasegawa (1980), for
flow lines with exponential processing times. In all these papers the subsystems are FSSQs
with lost arrivals and exponential interarrival times. As a result, they are equivalent to a
two-machine line decomposition with exponential characterization of the upstream machines.
(See Section 4.2.1.) The parameter of the exponential distribution of the upstream machines is
determined by using conservation of flow, equation (68).

Pollock, Birge, and Alden (1985), and Takahashi, Miyahara, and Hasegawa (1980) consider
an exponential characterization for the downstream machine as well. In Pollock, Birge, and
Alden (1985), the parameter of each exponential distribution is determined by using an equation
that is equivalent to the simpler form of equation (62), that is, equation (65). Takahashi,
Miyahara, and Hasegawa (1980) also use equation (65). However, they use the steady-state
blocking probabilities instead of the completion-instant blocking probabilities. Also, although
they are considering BAS, they do not increase the capacity of the FSSQ by 1.

Perros and Altiok (1986) assume that the downstream machines are characterized by phase-
type distributions. The phase-type distribution of each downstream machine is obtained by
using equation (62). This work is actually an extension of an earlier work of Altiok (1982)
where it was assumed that a machine may only be blocked by its immediate successor. Altiok
(1989) extended the method of Perros and Altiok (1986) to the case of flow lines with phase-type
processing time distributions. For the same class of systems, Jun and Perros (1987) decompose
the system into a set of FSSQs with lost arrivals and phase-type interarrival and service times.
Although there is no exact equivalence in that case (because the lost model differs from the
switch-off model), their approach is similar to an approach of type SE1.

Hillier and Boling (1967) analyzed flow lines with exponential processing times using an
approach of type SE2. They decompose the original line into a set of FSSQs with exponential
interarrival and service times, which is equivalent to a two-machine line decomposition with ex-
ponential characterizations for both machines. The parameter of the exponential distribution of
each downstream server is obtained by using conservation of flow, equation (68). The parameter
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of the exponential distribution of each upstream server is obtained by using an equation which
differs significantly from equation (66). This equation is a reduced service rate approximation
and does not seem to be extendible to more general cases, e.g., phase-type characterizations.

An approach of type SE3 was independently proposed by Altiok and Ranjan (1987) and Gun
(1987); see also Gun and Makowski (1989). Both the upstream and the downstream machines
of each two-machine line is characterized by phase-type distributions. The distributions of
the upstream and downstream machines are obtained by means of equations (63) and (62),
respectively. Algorithm A3 designed to solve System SE3 consists of successive forward and
backward passes. During each forward (resp. backward) pass, the estimates of the parameters
of the phase-type distributions of the upstream (resp. downstream) machines are improved.
Because the number of phases of the distributions of upstream and downstream machines may
be very large, Altiok and Ranjan (1987) suggest approximating the distributions of starvation
and blocking times that appear in equations (63) and (62) by Coxian-2 distributions. (See
Appendix.)

This approach is attractive since it offers a symmetrical view of the decomposition in the
sense that starvation and blocking play a similar role. Let us illustrate how this symmetrical
decomposition method works by means of a simple example. Consider a three-machine flow line
where the processing time distribution of each machine is assumed to be a Coxian-2 distribution.
Let (µi,1, ai,1, µi,2) be the parameters of the Coxian-2 distribution corresponding to Machine Mi,
i = 1, 2, 3. From the boundary conditions (equation (61)), we know that the distributions of
Machines Mu(1, 2) and Md(2, 3) are identical to those of Machines M1 and M3, respectively.

The distribution of Machine Md(1, 2) is determined using (62), the blocking propagation
equation. According to this equation, the phase-type distribution of Machine Md(1, 2) has the
form shown in Figure 5. In the case of phase-type distributions, the residual processing time
distribution gCd (2, 3) is characterized by the parameters αCj (2, 3), j = 1, 2, where αCj (2, 3) is
the probability that Machine Md(2, 3) is in phase j at the instant at which blocking of Machine
Mu(2, 3) occurs. Thus, there are three parameters that characterize the phase-type distributions
of Machine Md(1, 2), namely BC

u (2, 3), αC1 (2, 3), and αC2 (2, 3), which can be derived from the
exact analysis of Line L(2, 3). Note that in Figure 5, the transition probabilities of the phase-type
distribution are not expressed explicitly, but they are easily obtained. For instance, the transition
probability c1,4 from the first stage to the fourth is given by c1,4 = (1− a2,1)BC

u (2, 3)αC2 (2, 3).
Similarly, the distribution of Machine Mu(2, 3) is determined from (63), the starvation prop-

agation equation. According to this equation, the phase-type distribution of Machine Mu(2, 3)
has the form shown in Figure 6. The distribution gCu (1, 2) is characterized by the parameters
βCj (1, 2), j = 1, 2, where βCj (1, 2) is the probability that Machine Mu(1, 2) is in phase j at the
instant at which starvation of Machine Md(1, 2) occurs. Thus, there are three parameters that
characterize the phase-type distributions of Machine Mu(2, 3), namely SCd (1, 2), βC1 (1, 2), and
βC2 (1, 2), which can be derived from the exact analysis of Line L(1, 2).

Very few theoretical results are available about the existence or uniqueness of the solution or
about the convergence of the iterative algorithm associated with a particular decomposition. In
case of an exponential characterization of both the upstream and downstream machines, Dallery
and Frein (1989a) proved that the three systems of equations, SE1, SE2, SE3, have a unique
solution, and that Algorithm A3 associated with System SE3 always converges.

All the above methods are based on the decomposition of a K-machine line into K − 1
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Figure 5: Phase-Type Distribution of Machine Md(1, 2)

Figure 6: Phase-Type Distribution of Machine Mu(2, 3)
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two-machine lines. Alternative decompositions that involve larger subsystems are also possible.
For instance, a K-machine line can be decomposed into a set of K − 2 three-machine lines.
This approach was investigated by Brandwajn and Jow (1988). It may provide more accurate
results. However, it requires repetitive solutions of three-machine subsystems that, as discussed
in Section 4.4, are usually complex.

5.1.2 Other Results

Several authors have derived simple approximate formulas for estimating the production rate of a
FLRM where all stations are identical (that is, their processing time distributions have the same
mean and coefficient of variation) and all buffers have the same capacity. A formula was obtained
by Knott (1967, 1970a) in the case of two-machine flow lines with identical Erlang distributions.
Haydon (1973) (cited by Buzacott, 1990) extended Knott’s formula to flow lines with any number
of machines. A formula was obtained by Muth (1987) (cited by Brumenfield, 1990) in the case
of flow lines with any number of machines and no intermediate storage. Brumenfield (1990)
extended Muth’s formula to flow lines with intermediate buffers.

Recently, there have been several attempts to establish bounds for the production rate of
FLRMs. Van Dijk and Lamond (1988) considered a model which is equivalent to a three-machine
FLRM. All processing times are exponentially distributed. The type of blocking considered
is blocking-before-service. Lower and upper bounds on the production rate are obtained by
considering two different modifications of the original model. For instance, the lower bound
model is the same as the original model except that there is no limitation on the capacity of
each buffer but there is a global limitation on the total number of parts that can be present
in the first and second buffers. This model has an exact product-form solution (Baskett et al.,
1975). Shanthikumar and Jafari (1987) considered the same model. They suggested alternative
lower and upper bounds. These bounds are obtained as the production rates of two different
two-machine lines.

Onvural and Perros (1989) derived an upper bound on the production rate of a flow line with
exponential service times. The idea is based on using an equivalent closed model. In the case of
BBS, for instance, the production rate of the original flow line is identical to the production rate
of a closed model whose population is equal to the total number of buffer spaces of the original
model. An upper bound on the production rate of the closed model is obtained by replacing all
finite buffers by infinite buffers. The production rate of the resulting closed model can simply
be calculated since this model has a product-form solution (Baskett et al., 1975).

5.2 Flow Lines with Unreliable Machines

5.2.1 Decomposition

All decomposition methods for flow lines with unreliable machines decompose the original line
with K machines into a set of K − 1 two-machine (FLUM) lines, each one being associated
with a buffer of the original line. The basic principle of decomposition methods presented in
Section 5.1.1 in the case of FLRMs remains valid in the case of FLUMs. Here again, the upstream
machine of Line L(i, i+1), Machine Mu(i, i+1) represents the effects of the entire portion of the
line upstream of Buffer Bi,i+1, as illustrated in Figure 4. Similarly, Md(i, i+1)), the downstream
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machine of Line L(i, i+ 1), represents the effects of the entire portion of the line downstream of
Buffer Bi,i+1.

However, existing decomposition methods for FLRMs and FLUMs are somewhat different,
even though they are based on similar principles. This is because decomposition methods for
FLUMs are designed mainly to capture the effect of failures of machines. As a consequence,
they are based on the assumption that starvation and blocking in FLUMS are due to failures of
machines rather than variations in processing times.

Decomposition methods developed so far assume that the uptime and downtime distributions
of all machines of the original flow line are memoryless, i.e., exponential for asynchronous or
continuous models and geometric for synchronous models. In the case of asynchronous model
the processing time distributions is also assumed to be exponential.

In all decomposition methods proposed for FLUMs that we are aware of, the characterization
of the upstream and downstream machines of all two-machine FLUMs is the same as that of the
machines of the original line. For instance, if the machines of the original line have exponential
distributions for processing times, uptimes, and downtimes, the upstream and downstream ma-
chines of all the two-machine lines have exponential distribution for processing times, uptimes,
and downtimes as well. As a result, they are also characterized by three parameters. Exact solu-
tions of the subsystems can be obtained using an appropriate technique among those discussed
in Section 4.3.

Evidence for the exponential/geometric distribution comes from the observations of Vladzievskii
(1952), who studied the output processes of actual lines, and found that they were closely fitted
to exponential distributions; of Buzacott (1967a), who calculated the variance of the output
processes of different models, and found that the coefficient of variation was always close to 1;
and of Schick (Schick and Gershwin, 1978) who studied the output processes of simulations of
Buzacott-type two-machine lines, and found that both uptimes and downtimes had distributions
that appeared to be very close to geometric.

As in the case of FLRMs, several equations can be used to determine the unknown parameters
of the upstream and downstream machines of each two-machine line. Since all distributions are
exponential (or geometric), they are determined by a single parameter. Therefore, one needs as
many equations as the number of unknown distributions. Typical decomposition methods for
FLUMs use some or all of the following:

Conservation of Flow One of the basic principles of decomposition, as indicated in Section
5.1.1, is that the behavior of material in the buffer of Line L(i, i+ 1) is close to the behavior of
material in Buffer Bi,i+1 in Line L. In particular, the average flow rate of material out of the
buffer of Line L(i, i+ 1) is close to the average flow rate of material out of Buffer Bi,i+1 in Line
L, that is, P (i, i + 1) ≈ Pi+1. As a result of the conservation of flow in Line L, equation (13),
this implies the following conservation of flow between the two-machine lines:

P (i− 1, i) = P (i, i+ 1) , i = 2, · · · ,K − 1 (69)

Note that this equation is identical to equation (68) for FLRMs. This is not surprising since
conservation of flow is not related to whether the machines are reliable or unreliable.
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Flow Rate-Idle Time A second set of equations is based on (10) for systems with operation
dependent failures. It can be written

1

µu(i, i+ 1)eu(i, i+ 1)
=

1

µiei
+

1

P (i− 1, i)
− 1

µd(i− 1, i)ed(i− 1, i)
(70)

It may also be expressed in the following alternative form:

1

µd(i− 1, i)ed(i− 1, i)
=

1

µiei
+

1

P (i, i+ 1)
− 1

µu(i, i+ 1)eu(i, i+ 1)
(71)

These equations are obtained from equation (10) by assuming that the probability of Ma-
chine Mi being idle can be expressed as the sum of the probability of it being starved and the
probability of it being blocked, i.e.:

Ii = Si +Bi (72)

In the case of discrete material systems (asynchronous or synchronous models), this relationship
is only approximate because a machine can be simultaneously starved and blocked. In fact,
Ii < Si+Bi. If the buffers are large, the probability of being starved and blocked simultaneously
is very small and therefore equation (72) is a good approximation. For continuous models, (72)
is exact since in that case, a machine cannot be blocked and starved simultaneously (Dallery,
David, and Xie, 1989).

The probability of starvation of Machine Mi in Line L is approximated by the probability
of starvation of Machine Md(i − 1, i) in Line L(i − 1, i), i.e., Si = Sd(i − 1, i). Similarly, the
probability of blocking of Machine Mi in Line L is approximated by the probability of blocking
of Machine Mu(i, i+ 1) in Line L(i, i+ 1), i.e., Bi = Bu(i, i+ 1). Therefore, using equation (72),
equation (10) implies:

Ei = ei(1− Sd(i− 1, i)−Bu(i, i+ 1)) (73)

Equation (10) also holds for Machine Md(i− 1, i) in Line L(i− 1, i). This machine is never
blocked, so that the equation reduces to:

Ed(i− 1, i) = ed(i− 1, i)(1− Sd(i− 1, i)) (74)

Similarly, equation (10) applied to Machine Mu(i, i+ 1) yields:

Eu(i, i+ 1) = eu(i, i+ 1)(1−Bu(i, i+ 1)) (75)

Incorporating equations (74) and (75) into equation (73) yields:

Ei
ei

+ 1 =
Ed(i− 1, i)

ed(i− 1, i)
+

Eu(i, i+ 1)

eu(i, i+ 1)
(76)

Equations (70) and (71) are then obtained from equation (76) by using the following rela-
tionships: Ei = Pi/µi; Ed(i− 1, i) = P (i− 1, i)/µd(i− 1, i); Eu(i, i+ 1) = P (i, i+ 1)/µu(i, i+ 1);
and Pi = P (i− 1, i) = P (i, i+ 1).

We note that equations similar to (70) and (71) can also be obtained for systems with time
dependent failures, using equation (12) instead of equation (10).
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Resumption of Flow These equations propagate the distribution of repair times in pseudo-
machines. That is, if Machine Mu(i, i + 1) is down, they determine the probability distribu-
tion of when it will be up. They determine the mean time to repair of Machine Mu(i, i + 1),
MTTRu(i, i + 1), or alternatively its repair rate (or probability of repair in the case of a syn-
chronous system), ru(i, i + 1). These quantities are functions of corresponding parameters of
Mu(i− 1, i), among other things.

These equations are based on the following arguments. Machine Mu(i, i+ 1) represents the
portion of the line upstream of Buffer Bi,i+1. Thus, Machine Mu(i, i + 1) is down if either
Machine Mi is down, or Machine Mi is starved as a result of one of its upstream machines being
down. The second condition is equivalently represented by Machine Mu(i − 1, i) being down.
The time when Mu(i, i + 1) comes back up is therefore related to the time when Mu(i − 1, i)
would come back up (if it were the culprit) and to the time when Mi would come back up.
Similarly, repair parameters of Md(i, i+ 1) are related to those of Md(i+ 1, i+ 2).

When probabilities or rates are propagated, these equations are in the form:

ru(i, i+ 1) = ru(i− 1, i)X(i, i+ 1) + ri(1−X(i, i+ 1)) (77)

where X(i, i+ 1) is the conditional probability, given that Mu(i, i+ 1) is down (i.e., that there
is no material entering Bi,i+1), that Bi−1,i is empty, and Mu(i− 1, i) is down. Similarly,

rd(i, i+ 1) = rd(i− 1, i)Y (i, i+ 1) + ri+1(1− Y (i, i+ 1)) (78)

Alternatively, when MTTR’s are propagated the resumption of flow equations are of the
form:

1

ru(i, i+ 1)
=

1

ru(i− 1, i)
γ(i, i+ 1) +

1

ri
(1− γ(i, i+ 1)) (79)

where γ(i, i + 1) is the fraction of failures of Machine Mu(i, i + 1) that are caused by a failure
of Machine Mu(i− 1, i). Similarly,

1

rd(i, i+ 1)
=

1

rd(i− 1, i)
β(i, i+ 1) +

1

ri+1
(1− β(i, i+ 1)) (80)

Recall that pseudo-machines have been characterized as having exponentially (or geomet-
rically) distributed repair times. It appears from the above discussion that the repair time of
Machine Mu(i, i+ 1) corresponds to a repair time of either Machine Mi, or one of the machines
further upstream, Mi−1, or Mi−2, ..., or M1. Since all these machines have exponential repair
times, the repair time of Machine Mu(i, i+ 1) should be a mixture of these exponentials, a hy-
perexponential distribution (Kleinrock, 1975), which is a special case of phase-type distribution.
Consequently, a more accurate characterization of the repair time of Machine Mu(i, i+ 1) would
be a hyperexponential distribution. Assuming an exponential characterization of repair times
implies that the hyperexponential distribution is approximated by an exponential distribution
having the same mean.

When all the machines of the original line have the same repair rate, the hyperexponential
distribution reduces to an exponential distribution. In other words, all the repair times of the
pseudo-machines are exponentially distributed with the same rate as the common repair rate of
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all the machines of the original line. More generally, if the repair rates of the machines of the
original line are close to one another, the hyperexponential distributions are close to exponential
distributions. We therefore expect that methods based on these equations are more accurate
when the repair parameters are more nearly equal.

A potentially interesting research area would be to develop approximation techniques based
on hyperexponential distributions. It would be important to avoid adding unnecessary complex-
ity to improve accuracy.

Interruption of Flow These equations propagate the distribution of failure times in pseudo-
machines. That is, if Machine Mu(i, i+ 1) is up, they determine the probability distribution of
when it will next be down. They determine the mean time to failure of Machine Mu(i, i + 1),
MTTFu(i, i + 1), or alternatively its failure rate (or probability of failure in the case of a
synchronous system), pu(i, i + 1). These quantities are functions of parameters of Mu(i− 1, i),
among other things.

These equations are based on the following arguments. If Mu(i, i+ 1) is up, it may fail due
to Mi going down or due to Buffer Bi−1,i becoming empty as a result of one of the upstream
machines of Mi being down. This second condition is equivalently represented by the buffer of
Line L(i−1, i) becoming empty as a result of a failure of Mu(i−1, i). The time when Mu(i, i+1)
goes down is therefore related to the time when Mu(i − 1, i) would go down and to the time
that Mi would go down. Similarly, failure parameters of Md(i, i + 1) are related to those of
Md(i+ 1, i+ 2).

These equations are often of the form

pu(i, i+ 1) = pi + V (i, i+ 1)Sd(i− 1, i) (81)

and

pd(i, i+ 1) = pi+1 +W (i, i+ 1)Bu(i+ 1, i+ 2) (82)

where V (i, i + 1) and W (i, i + 1) are appropriate parameters. Similarly, they could instead
propagate MTTF, so they would be written

1

pu(i, i+ 1)
=

1

pi
+ η(i, i+ 1)

1

ps(i− 1, i)
(83)

and

1

pd(i, i+ 1)
=

1

pi+1
+ δ(i, i+ 1)

1

pb(i+ 1, i+ 2)
(84)

where η(i, i+ 1) and δ(i, i+ 1) are appropriate parameters.

Boundary Conditions Since the first machine is never starved, Mu(1, 2) is chosen to be the
same as M1. Since the last machine is never blocked, Md(K − 1,K) is chosen to be the same as
MK . This leads to a set of equations which may be summarized as

all parameters of Mu(1, 2) = all parameters of M1 (85)
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all parameters of Md(K − 1,K) = all parameters of MK (86)

We now describe the different decomposition methods that have been proposed in the liter-
ature. The number of equations used by each method depends on the number of free variables
in the system. For a given number of free variables, the methods differ by the precise equations
that are used and/or the algorithm used to solve the set of equations. We note that all methods
use equations (85) and (86).

One-Parameter Machine Sevast’yanov (1962) extended his continuous material, two-machine
solution to develop an approximate decomposition technique for a long line. He assumed that
the line consisted of machines that operate at the same speed and have the same exponential
repair time distributions. The failure time distributions are also exponential but need not be
the same. Consequently, we classify it as a one-parameter machine method because there is
only one parameter that distinguishes each machine from the others in the line. For each buffer,
approximately equivalent upstream and downstream machines are defined. These machines rep-
resent the effects of the entire upstream portion of the line and the entire downstream portion
of the line on the buffer. They are assumed to have the speed and repair rates as the machines
in the long line. Equations like (81) and (82) for the approximate values of the failure rates of
the equivalent machines are developed. (The equations are constructed by making use of “anti-
articles,” which is the same concept used in developing duality of flow lines. See Section 3.6.)
Sevast’yanov (1962) demonstrated uniqueness of the solution to his set of equations.

Zimmern (1956) earlier discussed such an approach in an informal way. Sevast’yanov was
evidently unaware of this work. Buzacott (1967a) also discussed a similar method for three-stage
and longer lines.

Two-Parameter Machine Gershwin (1987a) developed a decomposition method for a gen-
eral Buzacott-type model of synchronous transfer lines. Since the machines may have different
failure and repair parameters but the same operating speed, it is a two-parameter machine
method. It makes use of (69), (70), (77), (78), (85), and (86). This paper also offered an
algorithm for solving these equations.

Numerical results (1) were close to simulation results, both previously published and per-
formed for that paper; (2) suggested that production rates decreased to a non-zero limit as the
lengths of lines of identical machines and buffers increase without bound; (3) confirmed earlier
work on reversibility and duality; (4) showed that the addition of a nearly perfectly reliable
machine to an unreliable line affects performance in a predictable way; (5) demonstrated that
buffer levels, in lines of identical machines and buffers, are high near the upstream end of the
line, are nearly constant throughout the middle of the line, and are low near the downstream
end of the line; (6) indicated that the production rate of a line with buffer space divided into
many small buffers is greater than the production rate when the same space is divided into a
few large buffers. In addition, the numerical experiments provided evidence that the method
was efficient, since it was applied to lines with 20 machines.

Dallery, David, and Xie (1988) developed an algorithm (called the DDX algorithm) for
Gershwin’s (1987a) decomposition equations which was a great improvement over Gershwin’s
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algorithm. They repeated some examples, and obtained identical results in less time. Their
numerical results showed a reduction of computer time by a factor of 4 to 10, with the greatest
improvement in longer lines. They also analyzed a line with 40 machines. Finally, the DDX
algorithm converged for examples on which the earlier algorithm failed. The set of equations
used in the DDX algorithm consists of equations (70), (71), (77), and (78). The algorithm is in
the form of an iterated downstream and upstream sweep. After initialization, the downstream
sweep consists of (77) and (70). The upstream sweep consists of (78) and (71). Boundary
conditions are again determined by (85) and (86).

Dallery, David, and Xie (1988) used equation (71) instead of (69). The advantage of this is
to offer a symmetrical view of the decomposition method, in which upstream and downstream
machines play a similar role. This symmetrical set of equations naturally leads to the simple
back and forth iterative procedure described above. The new set of equations is equivalent to
that used by Gershwin (1987a). As a result, conservation of flow, equation (69), although not
explicitly used, is satisfied when the algorithm converges. We note that the DDX method is
conceptually similar to the decomposition methods for FLRMs that use an approach of type
SE3. (See Section 5.1.1.)

Dallery, David, and Xie (1989) derived a similar decomposition as Gershwin’s (1987a) for
continuous lines with equal processing rates, which they term homogeneous lines. Their equa-
tions were the same as those of Dallery, David, and Xie (1988): (70), (71), (77), and (78). As
noted above, the Flow Rate-Idle Time equations ((70) and (71)) are now exact because, in a
continuous material line, a machine cannot be starved and blocked simultaneously. They also
applied the DDX algorithm to this case. Also, equations (77) and (78) were derived from equa-
tions (79) and (80). Dallery, David, and Xie (1989) implicitly showed that equations (77) (which
propagates the repair rates) and (79) (which propagates the MTTR’s) are equivalent. A similar
statement can be made for equations (78) and (80). They concluded from their numerical and
simulation experiments that the method “provides very good estimates of the production rates,
and fairly good estimates of the average buffer levels”. Moreover, they emphasized that this
decomposition method is consistent with the duality property of continuous flow lines. (See
Section 3.6.) This again results from using symmetrical equations with respect to upstream and
downstream machines.

Glassey and Hong (1986b) develop essentially the same method as Gershwin’s (1987a) for
continuous lines with equal processing rates. They compared their results numerically with
those of Gershwin (1987a) (for synchronous systems) and found close agreement. They do not
indicate how they solved their equations, but they seem to use Gershwin’s algorithm. They find
that their version converges faster.

We note that all the above papers used the resumption of flow equations but not the inter-
ruption of flow equations. Thus, one question that naturally arises is what would be obtained
by using the latter instead of the former. It is possible to show that there is an equivalence be-
tween these two sets of equations. Indeed, in the case of two-parameter machine (synchronous
or continuous model), it is possible to show that equation (81), for instance, can be obtained
by combining equations (70) and (77) by using the fact that the processing rates of all pseudo-
machines are equal. However, informal numerical experimentation suggests that algorithms that
use the interruption of flow equations may have poor convergence properties.

Xie (1990) proposed a simplified version of the decomposition method of Dallery, David,
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and Xie (1989) for continuous lines with equal processing rates. The simplification is to set
the repair rates of all pseudo-machines equal to the repair rates of the corresponding machines
in the original line. That is, equations (77) and (78) are replaced by ru(i, i + 1) = ri and
rd(i, i + 1) = ri+1. The advantage of this simplified method is that Xie (1990) was able to
prove the existence and uniqueness of the solution of the set of equations and the convergence
of a simplified version of the DDX algorithm. However, this method can be expected to be less
accurate than the method of Dallery, David, and Xie (1989) except when the repair rates of the
machines of the original line are equal. Indeed, in the case where all the machines of the original
line have the same repair rates, it is easy to check that the algorithm proposed by Xie (1990)
and the DDX algorithm are identical. Thus, the results of Xie (1990) provides a proof of the
existence and uniqueness of the solution and of the convergence of the DDX algorithm (Dallery,
David, and Xie, 1989) in the special case where all the machines of the original line have the
same repair rate.

Recently, a slightly different decomposition method was proposed by Liu and Buzacott
(1989). As in Gershwin (1987a), they consider a general Buzacott-type model of synchronous
transfer lines. The general principle is again to decompose the original line into a set of two-
machine lines. Each equivalent machine is of the same type as the machines of the original line.
Liu and Buzacott (1989) use the boundary conditions, equations (85) and (86). They also use
equations similar to (70) and (71). The other equations are based on second-moment equiva-
lence between equivalent machines corresponding to the same machine of the original line. They
require that the second moment of the inter-output process of Machine Mu(i, i + 1) be equal
to the second moment of the inter-input process of Machine Md(i− 1, i). Thus, the method of
Liu and Buzacott (1989) mainly differs from that of Gershwin (1987a) and Dallery, David and
Xie (1988) in imposing second moment conditions instead of using equations (77) and (78). We
note that the idea of using two-moment information has similarities with equation (64) used in
certain decomposition methods for FLRMs.

In the derivation of their method, Liu and Buzacott (1989) introduce the concept of zero-
buffer equivalence. Consider a two-machine flow line with a finite intermediate buffer. It is
possible to define two different two-machine lines with no intermediate buffer that are equivalent
to the original line with respect to the departure times one with the original first machine and
an equivalent second machine and the other with the original second machine and an equivalent
first machine.

Transformation of Three-Parameter Machine into Two-Parameter Machine A first
way of handling lines with three-parameter machine is to proceed as follows. In a first step,
the original line with non-identical processing times is transformed into a line with identical
processing times using one of the transformations presented in Section 3.8.3. In a second step,
the resulting homogeneous line is analyzed using the above decomposition methods. As a result,
this approach involves two stages of approximation.

This was used by Gershwin (1987b) to extend his decomposition method (Gershwin, 1987a)
to lines with different processing times. He used disaggregation (Section 3.8.3) as the transfor-
mation step. Dallery, David, and Xie (1989) pointed out, however, that these disaggregation and
decomposition methods are not well suited to each other. The reason is that the parameters,
especially the repair rates, of the equivalent machines of the resulting homogeneous line differ
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by several orders of magnitude. As stated earlier, decomposition methods cannot be expected
to be very accurate in that case.

Dallery, David, and Xie (1989) (Section 3.8.3) used the homogenization transformation cou-
pled with the decomposition method. They found that the results are good when the original
line is nearly homogeneous. If this is not the case, significant errors may be encountered since
homogenization is no longer an accurate transformation. Similar results are obtained if the
transformation proposed by Liu and Buzacott (1990) (Section 3.8.3) is used instead of homoge-
nization.

Three-Parameter-Machine New difficulties arise when machine speeds (µi) differ from one
another. This is because pseudo-machines are assumed to be like real machines in having a
speed that does not change over time. On the other hand, the arrival and departure processes
from buffers have different speeds at different times. They change over time as a result of buffers
becoming empty or full. If Machine Mi is not starved or blocked or down, the rate that material
flows into Buffer Bi,i+1 is µi. However, if Buffer Bi−1,i is empty because the speed of Machine
Mi−1, µi−1, is less than µi, then the rate that material flows into Buffer Bi,i+1 is µi−1. Thus,
it would be more accurate to represent pseudo-machine Mu(i, i + 1) as having a time-varying
speed.

More generally, the rate that material flows into a buffer may have many different values,
depending on the relative speeds of its upstream machines, and the rate that material departs
from a buffer may also change over time, depending on the distribution of speeds of machines
downstream. If these speeds are not very different, the decomposition methods may work well.
If they are, we should not expect great accuracy.

Choong and Gershwin (1987) extended Gershwin’s (1987a) decomposition equations to asyn-
chronous systems in which all machines could have different speeds, failure rates, and repair rates
(that is, a long version of Gershwin and Berman’s two-machine line). All the distributions of
processing times, uptimes, and downtimes are assumed to be exponential. In addition to the
equations used by Gershwin (1987a), Choong and Gershwin (1987) used the Interruption of
Flow equations, that is (81) and (82). They used an algorithm similar to Gershwin’s (1987a).
While the method worked for some problems, it seemed to diverge for many others. Sastry
(1985) performed a similar analysis using equations like (79), (80), (83), (84). See also Awate
and Sastry (1987).

Gershwin (1989) transformed the set of equations derived by Choong and Gershwin (1987)
into an equivalent set of equations in a similar way as Dallery, David, and Xie (1988) did for
Gershwin’s method (1987a). Indeed, the set of equations used by Gershwin (1989) consists
of equations (70), (71), (77), (78), (81) and (82). Again, this approach is attractive since it
offers a symmetrical view of the decomposition. Gershwin (1989) used an extension of the DDX
algorithm to solve this set of equations. As in the case of two-parameter machines, he found that
the new algorithm was substantially faster and more reliable. Sastry’s (1985) earlier algorithm
also sweeps up and down the line. It differs in that it uses the conservation of flow equations
to update µd(i, i + 1), and flow rate-idle time to update µu(i, i + 1). It appears to require,
as an iterated step, the determination of a parameter so that a two-machine line has a given
production rate. This is the inversion of the exact methods described in Section 4. Such an
inversion caused the method of Gershwin (1987a) to be slow, and the method of Choong and
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Gershwin (1987) to be slow and unstable.
Hong and Seong (1989) proposed a slightly different decomposition method for asynchronous

exponential lines. They set the processing time of each pseudo-machines equal to that of the
corresponding machine in the original line. That is, they choose µu(i, i+1) = µi and µd(i, i+1) =
µi+1. Again, as in the case of two-parameter machines, it is possible to show that it is equivalent
to use the Resumption of Flow equations or the Interruption of Flow equations.

Glassey and Hong (1986b) extended their two-parameter method to continuous lines with
different processing rates. They derived a set of equations which is identical to that used by
Choong and Gershwin (1987). That is, they added the Interruption of Flow equations (81) and
(82). They do not indicate how they solve their set of equations. Also, it should be noted that
their continuous model is the same as that of their two-machine line study (Glassey and Hong,
1986a). That is, they do not reduce the failure rate of a slowed down machine.

Semery (1987 and 1988) also considered continuous lines with different processing times. His
model is the same as that of Gershwin and Schick (1980) and Dubois and Forestier (1982). He
extended the decomposition method of Dallery, David, and Xie (1989). As in Hong and Seong
(1989), he set the processing time of each pseudo-machine equal to that of the corresponding
machine in the original line. His set of equations is again symmetrical and he used an extension
of the DDX algorithm to solve the set of equations.

5.2.2 Aggregation

Several authors have independently developed approximation methods, which they refer to as
aggregation methods (Ancelin and Semery, 1987; De Koster, 1987; Terracol and David,
1987a). The basic idea of aggregation is to replace a two-machine-one-buffer sub-line by a single
equivalent machine. Most often, the equivalent machine is of the same type as the machines of
the original line. Thus, an aggregation method for analyzing a line with K machines consists in
applying K − 1 single aggregation steps. The aggregation of machines can be performed in any
order.

Analysis of continuous flow lines using aggregation was proposed by Ancelin and Semery
(1987) and Terracol and David (1987a) in the case of operation-dependent failures and De Koster
(1987) in the case of time-dependent failures. The uptimes and downtimes are exponentially
distributed. The machines may have different processing rates. Thus, the machines of the
original line as well as the equivalent machines have three parameters. For illustration purpose,
consider the case where the aggregation is performed in the order of the machines. In that case,
the aggregation method works as follows.

The first sub-line to be analyzed consists of Machines M1 and M2 and Buffer B1,2. This
sub-line, L1,2, is then replaced by a single equivalent machine, Ma

2 , which represents it in an
aggregate way with respect to the rest of the line. Consider the flow of material out of Machine
M2 in sub-line L1,2. The average uptime of Machine M2 is equal to the average time during
which the rate of flow out of Machine M2 is positive in sub-line L1,2. The average downtime
of Machine Ma

2 is equal to the average time during which the rate of flow out of Machine M2

is zero in sub-line L1,2. This corresponds to a situation where Machine M2 is either down or
starved as a consequence of Machine M1 being down. Finally, the processing rate of Machine
Ma

2 is equal to the average rate of flow out of Machine M2 in sub-line L1,2. It is a weighted
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average of the processing rates of Machines M1 and M2. Thus, Machine Ma
2 represents in a

aggregate way sub-line L1,2. The second sub-line to be analyzed consists of Machines Ma
2 and

M3 and Buffer B2,3. This sub-line is in turn aggregated into a single equivalent machine, Ma
3 .

This aggregation procedure is repeated until the last machine of the line. The last step consists
of aggregating the sub-line consisting of Machines Ma

K−1 and MK and Buffer BK−1,K into a
single equivalent machine, Machine Ma

K .
It appears that the aggregation method can also be viewed as a decomposition of the original

line into K − 1 two-machine sub-lines. Machine Ma
i , i = 2, ...K − 1, is the upstream machine

of sub-line L(i, i + 1), that is Machine Mu(i, i + 1). However, the major difference between
aggregation and decomposition methods is that in the case of the aggregation method, the
parameters of Machine Ma

i do not depend on the portion of the line downstream of Machine
Mi, while in the case of the decomposition method they do. In other words, the parameters
of Machine Ma

i are calculated as if Machine Mi was never blocked. Another way of looking
at the aggregation method is to view it as a simplified decomposition method in which the
downstream machine of each sub-line is the same as the corresponding machine of the original
line, i.e., Md(i, i+ 1) = Mi+1, i = 1, ...,K − 1. As a result, applying the aggregation method is
equivalent to applying a single forward step of the DDX algorithm. In light of this, it is easy
to find examples for which the aggregation method is not accurate. To overcome this problem,
different improvements of the aggregation method have been proposed by Terracol and David
(1987b) and De Koster (1988b). However, the analysis becomes much more complex.

Jafari and Shanthikumar (1987b) proposed an approximation method for synchronous flow
lines with operation-dependent failures and possible scrapping of parts. Their method can be
viewed as a refinement of the aggregation method. In order to present it, it is useful to view
it as a decomposition method. Consider the decomposition of the original line into K − 1 two-
machine subsystems. The method involves two slightly different analyses for each subsystem. In
the first case, Machine Md(i, i+ 1) is identical to Machine Mi+1, as in the original aggregation
method. The corresponding subsystem will be denoted by La(i, i + 1). In the second case,
Machine Md(i, i + 1) also models the blocking effect of Machine Mi+2 on Machine Mi+1. The
corresponding subsystem will be denoted by Lb(i, i+ 1). The method consists of a K − 2 steps.
The aim of the i’th step is to determine the parameters of Machines Md(i, i+ 1) in Subsystem
Lb(i, i + 1) and the parameters of Machine Mu(i + 1, i + 2) in Subsystem La(i + 1, i + 2). In
order to do this, step i consists of an iterative procedure that alternatively analyzes Subsystem
Lb(i, i+ 1) and Subsystem La(i+ 1, i+ 2).

We note that this method can again be viewed as a simplified decomposition method in the
sense that the downstream machine of Subsystem Lb(i, i+1) does not model the entire portion of
the line downstream of Buffer Bi. Indeed, the effect of failures of Machines Mi+3,Mi+4, · · · ,MK

on the behavior of material through Buffer Bi is neglected. (A failure of one of these machines
can indeed cause a blocking of Machine Mi+1.)

Finally, we note that the method of Jafari and Shanthikumar (1987b) also differs from the
other approximation methods for FLUMs (either aggregation or decomposition methods) by the
fact that the characterization of the upstream and downstream machines of each subsystem is
different from that of the machines of the original line. In the model of Jafari and Shanthikumar
(1987b), Machine Mu(i, i + 1) being down is represented by two different states depending on
whether it is down as a result of Machine Mi being down or as a result of Machine Mi being
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starved. Similarly Machine Md(i, i+ 1) being down (in Subsystem Lb(i, i+ 1)) is represented by
two different states depending on whether it is down as a result of Machine Mi+1 being down
or as a result of Machine Mi+1 being blocked.

It is interesting to note that using such a more complex characterization of subsystems
could also be done in decomposition methods. It is expected that this would improve their
accuracy, especially in cases where the repair rates of the machines of the original line are very
different. We note however that it would significantly increase the computational complexity of
decomposition methods. Nevertheless, it may be worth investigating what would be the effect
of such a modification on, for instance, the Gershwin-DDX decomposition method.

6 Extensions

In this section, we briefly review some flow line papers that relax the more typical assumptions
of Section 2.4, or that study issues other than steady state production rate and mean buffer
levels. We also briefly survey the literature pertaining to assembly and closed loop systems.

6.1 Variance of Output

All the methods described in Sections 4 and 5 deal with steady-state average production rates
and steady-state average buffer levels. However, the variance of the production and of the buffer
levels during a time period is also important.

This issue has been entirely neglected. As far as we are aware, there are only two published
papers that deal with the calculation of the variance of the behavior of a transfer line over a
limited time period: Miltenburg (1987) and Lavenberg (1975). (There is also an unpublished
paper by Ou and Gershwin (1989).) These papers only treat two-machine lines, and obtain
results that are difficult to use and to understand intuitively. It is not clear how to extend the
results of these papers either exactly or approximately.

This is a tremendously important area because manufacturers must deliver products on a
daily or weekly basis. Informal numerical and simulation experimentation (Gershwin, 1991b),
as well as factory observation, indicate that the standard deviation of weekly production can be
over 10% of the mean. This implies that, over the course of a year, it is not surprising to see that
the production of some weeks can be half that of other weeks. This variability is an inherent
characteristic of these systems. It is striking that it is so little appreciated by researchers in this
area. Perhaps it is of greater importance now than in the past because of the current emphasis
on “just-in-time” production.

Prediction of this variability is no less important than that of the prediction of the mean;
in fact, it may be more important. It would be reasonable for the buyer of a transfer line not
only to specify its mean production rate; in addition, or instead, the firm might insist that it
be able to deliver a certain amount of finished product each week with a certain probability. In
order to do this, the research community must be able to provide statistical information on the
number of parts produced during a given time interval other than just the mean: ideally, the
probability distribution; more realistically, it can provide the standard deviation of the number
of parts produced during a time interval, and the probability can be estimated based on, for
instance, a normal distribution.
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Furthermore, the variance of the number of parts in buffers, or in the whole line, may be just
as important. Indeed, the time spent by a part to go through the line is highly influenced by the
number of parts currently in the line. Since manufacturers must respond quickly to customers,
a variable response time is just as undesirable as a variable production rate.

6.2 Models with Scrapping of Parts

Scrapping refers to the rejection of bad parts. When a part is rejected, it leaves the line and
does not go into the machines and buffers downstream of the point where the rejection occurs.
Conservation of flow must be generalized to account for scrapping.

Shanthikumar and Tien (1983) analyzed a synchronous two-machine FLUM with geometric
distributions for up- and downtimes in which scrapping of workpieces occurs with a certain
probability when a failure occurs; see Section 2.1.3. They presented an algorithmic solution of
the transition equations based on the matrix geometric property; see Section 4.3.1. Jafari and
Shanthikumar (1987a) considered the more general case where the distributions of uptimes and
downtimes are discrete phase-type distributions. They also proposed an aggregation method for
the approximate analysis of flow lines with any number of machines; see Section 5.2.2.

6.3 Machines in Parallel

Ignall and Silver (1977) developed an approximation for two-stage systems with multiple identi-
cal machines in each stage. The approximation is based on Buzacott’s (1967b) observation that
the production rate of a two-machine line (i.e., a two-stage system with a single machine in each
stage) can be written (in our notation)

E(N) = E0 + (E∞ − E0)m(N)

where m(N) is a monotonically increasing function of the buffer size, and E0 and E∞ are the
production rates with no buffers and with infinite buffers. Expressions for E0 and E∞ are given
in Sections 3.5 and 4.1. To extend this formula for multiple machines per stage, E0 and E∞
are adjusted. (They evidently had synchronous systems in mind, but this equation applies to
asynchronous and continuous systems as well.)

Elsayed and Hwang (1984) considered a two-stage synchronous system in which each stage
consists of two machines in parallel. The machines may be operated in a splitting arrangement,
in which the two machines at a stage are operated at half the required production rate when they
are both operational. When one fails, the other operates at the production rate. Alternatively,
they may be operated in a standby arrangement, in which the backup machine at a stage is
only operated when the primary machine goes down. The backup machine may be in a cold,
warm, or hot standby status. There is a different failure rate associated with each status.
Presumably, it takes least time to switch over to a hot standby machine, and most time to
switch over to a cold standby machine, but this is not stated clearly. Thus, insurance against
disruption due to failures is provided not only by the buffers (as in all the other models), but
also by multiple machines. Numerical solutions are provided, and the production rate follows
the familiar saturating pattern.
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Forestier (1980) formulated a generalizization of the Zimmern-Wijngaard-Gershwin-Schick
continuous model. He replaced the single machines before and after the buffer with banks of
machine operating in parallel. Thus αi became an integer, rather than a binary variable. The
differential equations and boundary conditions for the steady-state probability distribution are
generalizations of Zimmern’s and Gershwin and Schick’s.

Mitra (1988) studied essentially the same system and obtained a solution by formulating the
problem as an eigenvalue problem. He demonstrated numerically that several small machines
at each station are better than a few large machines (when the production rates of an isolated
station composed of the small machines is the same as that of an isolated station composed of
the large machines).

Finally, Iyama and Ito (1987) analyzed a line with parallel machines and exponential pro-
cessing times by solving the underlying Markov chain.

6.4 Limited Repair Personnel

Dudick (1979) studied synchronous systems in which there are limited repair personnel. He
considered a set of strategies which assign priorities to machines under a variety of conditions.
For example, one class of strategies is to always repair Machine i first whenever both machines
are down. Another is to always repair Machine i first whenever both machines are down and
the buffer level is above or below some threshold. In all graphs provided, the production rate is
a saturating function of the buffer size. Buzacott (1982) extended some of Dudick’s results.

Elsayed and Turley (1980) assumed that each machine has two modes of failure, and that
there are a limited number of repair personnel. In one policy, the machines are treated the same
when they are both down, but in the other policies, one machine is favored over another if it
is in one failure mode and the other is in the other mode. They solved the Markov transition
equations numerically and found, for the examples they considered, that (1) production rate is
a saturating function of buffer size; (2) the policy of treating all failures equally is superior to
favoring one over the other; (3) the difference between the latter policies only appears as buffer
size is sufficiently large. It is not stated explicitly, but this is evidently a synchronous line. They
make the same assumption as Buzacott (1967b): that the probability of two events occurring
in a cycle is negligible. This is evidently a blocking-after-service model since the first machine
may fail while the buffer is full.

6.5 Non-Zero Transfer Time In Buffers

Commault and Semery (1990) pointed out that for some systems, the time that it takes a part
to move through a buffer, even when the buffer is empty, may be significant. In that case,
the models covered in this paper are inadequate, since they assume that the transit time is 0.
Commault and Semery used a two-machine line with non-zero buffer transit time to demonstrate
the effects of buffer delays. They propose an approximation in which a two-machine line whose
buffer is smaller than that of the original line, but which has no delays, is nearly equivalent to
the original line. This issue is also investigated by Liu (1990).
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6.6 Line Design

The line design problem is that of choosing buffer sizes or machine parameters to maximize per-
formance or minimize cost subject to constraints. In order to solve this problem, it is necessary
to evaluate the performance measures of lines. Existing methods ignore variability since there
are essentially no methods for evaluating variability.

Sevast’yanov (1962) studied the optimal allocation of storage space for his one-parameter
system. Hillier and Boling (1966, 1967, 1972, 1977, 1979) studied the allocation of machine ca-
pacity and storage space and discovered the “bowl phenomenon” and made related observations.
(However, see Sections 1.4 and 3.9.)

Other analytic papers that deal with line design include Sheskin (1974, 1976), Soyster and
Toof (1976), and Soyster, Schmidt, and Rohrer (1979). Coillard and Proth (1984) study a system
similar to that of Dubois and Forestier (1982) and use the analysis to find the optimal location
of a single buffer among a line of several machines. This is similar to the problem considered by
Soyster and Toof (1976).

Ho, Eyler, Chien (1978) and Caramanis (1987) optimize line performance by using pertur-
bation analysis techniques to calculate gradients from simulations. In fact, Ho, Eyler, Chien
(1978) was the paper in which perturbation analysis was developed.

6.7 Assembly/Disassembly (Fork/Join) Networks

Throughout the paper, we have been concerned with flow line models. The special structure of
these models, i.e., a series of machines separated by buffers, allowed many results to be obtained.
Although flow line structures are often encountered in industry, there also exist manufacturing
systems exhibiting more general structures. Among these, two are of great interest and can
be viewed as extensions of the flow line structure, namely assembly systems and closed loop
systems.

An assembly system is a manufacturing system in which some machines perform assembly
operations. There are two kinds of assembly systems (Liu, 1990): (1) those that add compo-
nents to a workpiece (such as printed circuit or surface mount assembly), and (2) those that
assemble different entities (workpieces) that have themselves already been processed within the
manufacturing system. With respect to modeling and analysis, the first case is not different
from a flow line. The second, which can form a network, is what we deal with here.

A closed loop system is a flow line in which resources such as pallets are required. There is a
finite set of resources available. To be loaded into the system, a part must first get a resource. It
then holds this resource during its sojourn in the system. When the part leaves the system, the
resource is again available and a new part may enter the system. Resources may also correspond
to a control policy, for example where they correspond to kanbans; see e.g. Di Mascolo, Frein,
Dallery, and David (1990). In a kanban policy, only a limited number of parts are allowed in
some portion of the system. Each part is associated with one of a limited number of kanbans
(cards).

Flow lines, assembly, and closed loop structures are special cases of a general structure
referred to as assembly/disassembly (A/D) or fork/join (F/J) networks. Assembly is the
process of creating a single entity out of more than one. Disassembly is the reverse: it is the
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process of creating more than one entity out of one. The terms fork and join are also often used
for disassembly and assembly, respectively. An A/D system consists of a set of A/D machines
interconnected by a set of buffers such that each buffer has exactly one upstream server and one
downstream machine. An A/D machine has a set of input buffers and a set of output buffers.
An A/D machine pulls one entity from each of its upstream buffers and delivers one entity to
each of its downstream buffers.

Many of the results presented in Section 3 for flow line models have extensions in the case
of A/D models. First, the results pertaining to a single machine (see Section 3.2) easily extend
to a single A/D machine. The sample path behavior of A/D networks can still be described
by means of evolution equations that are generalizations of those presented in Section 3.3;
see Dallery, Liu, and Towsley (1990, 1991). As a result, properties like conservation of flow,
monotonicity, reversibility, can again be established using these evolution equations; see Ammar
(1980), Adan and Van der Wal (1989), Shanthikumar and Yao (1989), Liu (1990), and Dallery,
Liu, and Towsley (1990 and 1991). Duality properties do also exist for general A/D networks;
see Ammar and Gershwin (1989), Dallery, Liu, and Towsley (1990) and Liu (1990). Another
property of interest is that of symmetry, which can be obtained by combining reversibility and
duality properties (Dallery and Towsley, 1990; Dallery, Liu, and Towsley, 1990).

As for flow line systems, analysis techniques for A/D networks are mainly based on approx-
imations. Present approximation methods are limited to two kinds of systems: tree-structured
A/D networks and closed loop systems. A tree structured A/D system is an A/D system
whose associated graph does not contain cycles. To the best of our knowledge, all approximation
methods for tree structured A/D systems pertain to systems with unreliable machines. These
methods are extensions of the decomposition and aggregation methods presented in Section 5.2.
As in flow lines, all decomposition methods for tree structured A/D networks decompose the
original system into a set of two-machine, one-buffer systems (that is, two-machine flow lines).
Details can be found in Gershwin (1986a, b, 1991a), Di Mascolo, David, and Dallery (1991), Liu
(1990), De Koster (1987, 1988a)

Closed loop systems are more complex to analyze than flow line systems because of the
population constraint imposed by the closed loop structure, i.e., the total number of entities in
the different buffers is a constant. This quantity corresponds, for instance, to the total number of
pallets available. Approximation methods for closed loop systems with reliable machines have
been proposed by Suri and Diehl (1984, 1986), Akyildiz (1988), Onvural and Perros (1987),
Dallery and Frein (1989b), Frein and Dallery (1989), Liu (1990). See also Onvural (1990) for
a survey of these results. An approximation method for closed loop systems with unreliable
machines has been developed by Frein, Commault, and Dallery (1991).

7 Conclusions and New Directions for Research

In this paper, we have tried to be as exhaustive as possible in describing the most important, and
most widely studied, issues and problems in manufacturing flow lines. The literature pertaining
to the class of models considered in Section 2 is fairly complete. Certain issues, however, require
further investigations.

As described in Section 5, several approximation methods for FLRMs and FLUMs have been
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developed. Although some numerical experiments have been reported in the literature, it would
be useful to have a systematic study of the accuracy of the different methods. Moreover, since
FLUMs can be transformed into FLRMs and vice versa (see Section 3.7), it would be useful
to compare the accuracy of the methods devoted to FLRMs to that of the methods devoted
to FLUMs when applied to either FLRMS or FLUMs. We suggest that these comparisons be
performed using data chosen according to the guidelines in Section 3.10. Also, approximation
methods for FLUMs that can handle more general distributions of times to failures and times
to repair than exponential (or geometric) ones, should be developed. Another possible research
direction is to apply the theory of Markov chain aggregation to the analysis of these systems.
See Schweitzer and Altiok (1989).

The issues discussed in Section 6 have not yet been completely resolved, although partial
results are available. One missing area is that of variability. As we describe in Section 6,
there are only two published papers that deal with the question of the variance of the output
of a transfer line. This class of problems should be high on the research agenda of the field.
Approximation methods for flow lines with parallel machines should also be developed. The
results pertaining to A/D networks are not as complete as those pertaining to flow lines. This
area needs more investigation. In particular, approximation methods that can handle a larger
class of A/D networks than those currently available should be developed.

Other issues include multiple part types, routing, control, correlated failures, and systems
with machines of different types. An example of the latter is a system with batched continuous
material, so the upstream portion of the line is continuous and the downstream portion is
synchronous. Another example is a line consisting of some automated stations and some manual
stations. A portion of the line might be synchronous while the rest is asynchronous.

There have been some recent papers on pull systems and kanban-operated lines. This area,
and the general issue of just-in-time production, is very close to the literature surveyed here,
and will prove to be important in the near future.

On the other hand, there is already enough literature on allocation of storage or machine
capacity, particularly based on optimization methods. We say this because there seems to
be very little difference in performance between intuitively reasonable and optimal allocations
(much less than the error in estimating machine parameters). It would however be of interest
to develop simple rules of thumb for resource allocation, and to prove bounds on their distance
from optimality.
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A Appendix

A.1 Coxian and Phase-Type Distributions

In general, the only tractable models are those that can be described by Markov processes, either
continuous time or discrete time (Kleinrock, 1975). Here we restrict our attention to continuous
time Markov processes (CTMPs). CTMPs are naturally obtained when all the distributions in
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the original model are exponential distributions. This is due to the famous and important
memoryless property of the exponential distribution (Kleinrock, 1975). The probability den-
sity function (pdf) of an exponential distribution is f(t) = µe−µt. The exponential distribution
is characterized by a single parameter, µ, called the rate. Its mean is m = 1/µ and its coefficient
of variation (CV ) is 1.

Because it naturally gives rise to Markov processes, the exponential distribution has been
widely used in the literature. However, it is not always an appropriate candidate for representing
actual distributions of real systems. In particular, distributions encountered in real systems may
have coefficients of variation far from 1. Fortunately, it is possible to overcome this difficulty,
while keeping the tractability of Markov processes, by using the so-called method of stages.
The idea is to represent a non-exponential distribution as a mixture of exponential distributions.

The simplest distribution of this form is the so-called Erlang distribution. An Erlang
distribution consists of a series of s exponential distributions with common rate µ. The random
variable associated with the Erlang distribution is then the sum of s independent exponential
random variables with rate µ.

A more general distribution is the so-called Coxian distribution (Kleinrock, 1975). A
Coxian distribution with s stages, also termed phases, is represented in Figure 7. The Coxian
distribution is more general than the Erlang distribution since it allows non-identical rates and
branching probabilities. In order to understand the meaning of this distribution, it is convenient
to give it a physical interpretation. Suppose it represents the overall processing time of a task
that can be decomposed into a set of s subtasks. The processing time of subtask j is exponentially
distributed with rate µj . Subtask 1 is first performed. Upon completion of subtask 1, either
subtask 2 is performed, with probability a1, or the overall task is completed, with probability
b1 = 1 − a1. More generally, upon completion of subtask j, either subtask j + 1 is performed,
with probability aj , or the overall task is completed, with probability bj = 1 − aj . Note that
bs = 1, that is, at most s subtasks are performed. Finally, we note that in the most general form
of Coxian distribution, it is possible to have a zero processing time with non-zero probability
(Kleinrock, 1975). This is achieved by adding a branching probability (a0, b0) before stage 1.

The most general form of distributions that are mixtures of exponential distributions is the
so-called phase-type distribution (Neuts, 1981). A phase-type distribution with s stages
(or phases) is represented in Figure 8. One can again give a physical interpretation of this
distribution in terms of an overall task that is decomposed into a set of s exponential subtasks.
(The processing time of subtask j is exponentially distributed with rate µj .) In that case, the
first subtask to be processed is subtask j with probability c0,j . Upon completion of subtask
j, either subtask k is performed, with probability cj,k, or the overall task is completed, with
probability cj,0. The branching and transition probabilities satisfy c0,1 + ... + c0,s = 1, and
cj,1 + ... + cj,s + cj,0 = 1. Again, one may add the possibility of having a zero processing time
with non-zero probability. A Coxian distribution is a special case of phase-type distributions.

Remark. We note that phase-type distributions can alternatively be described as the ab-
sorption time of a continuous time Markov process with s transient states and a single absorbing
state (Neuts, 1981). A state of the CTMP is associated with each of the s stages, and the extra
state, state 0, is the absorbing state. The parameters of the distribution are now the initial state
probabilities and the transition rates of the CTMP. The initial state probabilities correspond to
the branching probabilities c0,j . The transitions rates from state j to state k, µj,k, are given by
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Figure 7: Coxian Distribution with s Phases

Figure 8: Phase-Type Distribution with s Phases
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µj,k = µjcj,k, for k = 0, 1, ..., s. It should be emphasized that the two descriptions are equivalent.
However, in order to be consistent when dealing with Coxian and phase-type distributions, we
choose to only use the first description.

Coxian and phase-type distributions give rise to Markovian processes by extending the orig-
inal state space to incorporate the detailed information of which stage each distribution is
currently in. This increase of the size of the state space is the price to pay to deal with models
involving non-exponential distributions. As the feasibility and complexity of numerical solutions
of Markov processes are very much dependent on the size of the state space, the number of stages
of phase-type distributions should be kept as small as possible. (See Section 4.)

The practical question is then how to get (exact or approximate) phase type representations
of non-exponential distributions. There are two ways of obtaining phase-type distributions:
either by construction or by identification. The first way corresponds to the case where the
stages of the phase-type distribution have a physical interpretation. For instance, suppose a
machine performs an operation that takes an exponential time with rate 3.0. Moreover, at the
end of the processing, some parts stay on the machine for an inspection phase that takes an
exponential time with rate 4.0. Only one tenth of the parts are inspected and these parts are
selected at random. Then, the overall processing time (including inspection) of the machine is
exactly represented as a Coxian-2 distribution with parameters µ1 = 3.0; a1 = 0.1;µ2 = 4.0.

The second way is to identify a phase-type distribution to a given distribution. In that
case, the stages of the resulting phase-type distribution have no physical interpretation. They
are often called fictitious stages. Except in a limited number of cases (see Section 3.7 for
an example), it is usually not possible to identify the whole distribution. Instead, it is easy to
determine a phase-type distribution that has the same first and second moments, that is the
same mean and coefficient of variation, as those of a given distribution (Marie, 1980; Pierrat
1987). Identifying the first two moments is usually a good enough approximation, except for
distributions with large coefficients of variation in which case significant improvements may be
obtained by also identifying the third moment (Altiok, 1985a; Pierrat, 1987).

Finally, we note that similar results can be obtained in the case of discrete time Markov
processes. In that case, the geometric distribution plays the same role as the exponential dis-
tribution for CTMPs. Discrete time Coxian and phase-type distributions can be defined in a
similar way.

A.2 Uptime-Downtime Relationship

Property 1 Consider any machine of a flow line with unreliable machines. Let MTTF and
MTTR denote its average time to failure and average time to repair, respectively. Let E, I,
and D denote the proportions of time during which the machine is working, idle, and down,
respectively. Then, these quantities are related by

E

D
=
MTTF

MTTR
(87)

if the machine has operation-dependent failures, and by

E + I

D
=
MTTF

MTTR
(88)
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Figure 9: Illustration of the Proof

if the machine has time-dependent failures.

Proof. The machine alternates periods during which it is up (up-periods) and periods during
which it is down (down-periods). Let tk be the time at which the k-th down-period ends and
the (k + 1)-th up period begins. During each up-period, the machine alternates periods of time
during which it is working and periods of time during which it is idle. This is illustrated in
Figure 9. Let us define the following quantities

δUk : length of the k-th up-period.

δDk : length of the k-th down-period.

δWk : total working time during the k-th up-period.

δIk: total idle time during the k-th up-period.

Note that δIk may be equal to zero. The quantities E, I, and D can then be expressed as

E =
E[δWk ]

E[tk − tk−1]
; I =

E[δIk]

E[tk − tk−1]
; D =

E[δDk ]

E[tk − tk−1]
(89)

Note that δWk + δIk = δUk and as a result, E[δUk ] = E + I. Then, the proof follows by
noticing that E[δDk ] = MTTR; E[δWk ] = MTTF , in the case of operation-dependent failures;
E[δUk ] = MTTF , in the case of time-dependent failures. 2

We note that the above proof does not require any assumptions on the distributions of
processing times, up-times, and down-times.
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