630 research outputs found

    The CORTEX Cognitive Robotics Architecture: use cases

    Get PDF
    CORTEX is a cognitive robotics architecture inspired by three key ideas: modularity, internal modelling and graph representations. CORTEX is also a computational framework designed to support early forms of intelligence in real world, human interacting robots, by selecting an a priori functional decomposition of the capabilities of the robot. This set of abilities was then translated to computational modules or agents, each one built as a network of software interconnected components. The nature of these agents can range from pure reactive modules connected to sensors and/or actuators, to pure deliberative ones, but they can only communicate with each other through a graph structure called Deep State Representation (DSR). DSR is a short-term dynamic representation of the space surrounding the robot, the objects and the humans in it, and the robot itself. All these entities are perceived and transformed into different levels of abstraction, ranging from geometric data to high-level symbolic relations such as "the person is talking and gazing at me". The combination of symbolic and geometric information endows the architecture with the potential to simulate and anticipate the outcome of the actions executed by the robot. In this paper we present recent advances in the CORTEX architecture and several real-world human-robot interaction scenarios in which they have been tested. We describe our interpretation of the ideas inspiring the architecture and the reasons why this specific computational framework is a promising architecture for the social robots of tomorrow

    Assessing sleep health in a European population: results of the catalan health survey 2015

    Get PDF
    Objective To describe the overall sleep health of the Catalan population using data from the 2015 Catalan Health Survey and to compare the performance of two sleep health indicators: sleep duration and a 5-dimension sleep scale (SATED). Methods Multistage probability sampling representative of the non-institutionalized population aged 15 or more years, stratified by age, gender and municipality size, was used, excluding nightshift-workers. A total of 4385 surveys were included in the analyses. Associations between sleep health and the number of reported chronic diseases were assessed using non-parametric smoothed splines. Differences in the predictive ability of age-adjusted logistic regression models of self-rated health status were assessed. Multinomial logistic regression models were used to assess SATED determinants. Results Overall mean (SD) sleep duration was 7.18 (1.16) hours; and SATED score 7.91 (2.17) (range 0–10), lower (worse) scores were associated with increasing age and female sex. Alertness and efficiency were the most frequently impaired dimensions across age groups. SATED performed better than sleep duration when assessing self-rated health status (area under the curve = 0.856 vs. 0.798; p-value <0.001), and had a linear relationship with the number of reported chronic diseases, while the sleep duration relationship was u-shaped. Conclusions Sleep health in Catalonia is associated with age and gender. SATED has some advantaged compared to sleep duration assessment, as it relates linearly to health indicators, has a stronger association with self-rated health status, and provides a more comprehensive assessment of sleep health. Therefore, the inclusion of multi-dimensional sleep health assessment tools in national surveys should be considered.This work was cofunded by Ministerio de Economía y Competitividad [COFUND2014-51501]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Perceptions or Actions? Grounding How Agents Interact Within a Software Architecture for Cognitive Robotics

    Get PDF
    One of the aims of cognitive robotics is to endow robots with the ability to plan solutions for complex goals and then to enact those plans. Additionally, robots should react properly upon encountering unexpected changes in their environment that are not part of their planned course of actions. This requires a close coupling between deliberative and reactive control flows. From the perspective of robotics, this coupling generally entails a tightly integrated perceptuomotor system, which is then loosely connected to some specific form of deliberative system such as a planner. From the high-level perspective of automated planning, the emphasis is on a highly functional system that, taken to its extreme, calls perceptual and motor modules as services when required. This paper proposes to join the perceptual and acting perspectives via a unique representation where the responses of all software modules in the architecture are generalized using the same set of tokens. The proposed representation integrates symbolic and metric information. The proposed approach has been successfully tested in CLARC, a robot that performs Comprehensive Geriatric Assessments of elderly patients. The robot was favourably appraised in a survey conducted to assess its behaviour. For instance, using a 5-point Likert scale from 1 (strongly disagree) to 5 (strongly agree), patients reported an average of 4.86 when asked if they felt confident during the interaction with the robot. This paper proposes a mechanism for bringing the perceptual and acting perspectives closer within a distributed robotics architecture. The idea is built on top of the blackboard model and scene graphs. The modules in our proposal communicate using a short-term memory, writing the perceptual information they need to share with other agents and accessing the information they need for determining the next goals to address

    Cognitive Changes and Quality of Life in Neurocysticercosis: A Longitudinal Study

    Get PDF
    Neurocysticercosis (NCC) is one of the most common parasitic infections of the central nervous system. Cognitive changes have been frequently reported with this disease but have not been well studied. Our study team recruited a group of new onset NCC cases and a matched set of healthy neighborhood controls and new onset epilepsy controls in Lima, Peru for this study. A neuropsychological battery was administered at baseline and at 6 months to all groups. Brain MRI studies were also obtained on NCC cases at baseline and at 6 months. Newly diagnosed patients with NCC had mild cognitive deficits and more marked decreases in quality of life at baseline compared with controls. Improvements were found in both cognitive status and quality of life in patients with NCC after treatment. This study is the first to assess cognitive status and quality of life longitudinally in patients with NCC and provides new data on an important clinical morbidity outcome

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore