130 research outputs found

    Segmentation and kinematics of the North America-Caribbean plate boundary offshore Hispaniola

    Get PDF
    We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high-resolution multibeam echo-sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate-boundary structures are a series of strike-slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre-existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike-slip regime. Along the most recent trace of the SOFZ, we measured a strike-slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS-derived motion of 9.8 ± 2 mm a−1 has remained stable during the entire Quaternary.Depto. de Geodinámica, Estratigrafía y PaleontologíaFac. de Ciencias GeológicasTRUEpu

    Controlled motion of electrically neutral microparticles by pulsed direct current

    Get PDF
    A controlled motion of electrically neutral microparticles in a conductive liquid at high temperatures has not yet been realized under the uniform direct electric current field. We propose a simple method, which employs pulsed direct current to a conductive liquid metal containing low-conductivity objects at high temperature. The electric current enables the low-conductivity particles to pass from the centre towards the various surfaces of the high-conductivity liquid metal. Most interestingly, the directionality of microparticles can be controlled and their speed can be easily regulated by adjusting pulsed current density. We find that the movement may arise from the configuration of electrical domains which generates a driving force which exceeds the force of gravity and viscous friction. All of these features are of potential benefit in separating the particles of nearly equal density but distinctly different electrical conductivities, and also offer considerable promise for the precise and selective positioning of micro-objects or the controlled motion of minute quantities of surrounding fluids

    The Miocene – Pliocene boundary and the Messinian Salinity Crisis in the easternmost Mediterranean: insights from the Hatay Graben (Southern Turkey).

    Get PDF
    The Hatay Graben is one of three easternmost basins in the Mediterranean that preserve sediments that span the Miocene-Pliocene boundary, including gypsums from the Messinian Salinity Crisis (MSC). Here we integrate existing data and present new sedimentological and micropalaeontological data to investigate the palaeoenvironments of late Miocene to early Pliocene deposits and place this important area into a regional stratigraphic framework. Six sections are described along a ~ W – E transect illustrating the key features of this time period. Late Miocene (Pre-MSC) sediments are characterised by open marine marls with a benthic foraminiferal fauna suggestive of water depths of 100 – 200 m or less. Primary lower gypsum deposits are determined to be absent from the graben as sedimentological and strontium isotopes are characteristic of the resedimented lower gypsums. The intervening Messinian erosion surface is preserved near the basin margins as an unconformity but appears to be a correlative conformity in the basin depocentre. No Upper Gypsums or ‘Lago–Mare’ facies have been identified but available data do tentatively suggest a return to marine conditions in the basin prior to the Zanclean boundary. Sediments stratigraphically overlying the Messinian gypsums and marls are coarse-grained sandstones from coastal and Gilbert-type delta depositional environments. The Hatay Graben is not only strikingly similar to Messinian basins on nearby Cyprus but also to the overall model for the MSC, demonstrating the remarkable consistency of palaeoenvironments found in marginal basins across the region at this time

    Fifteen years of research on oral–facial–digital syndromes: from 1 to 16 causal genes

    Get PDF
    Oral–facial–digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype

    Field calibration of sediment flux dependent river incision

    Get PDF
    Bed erosion and sediment transport are ubiquitous and linked processes in rivers. Erosion can either be modeled as a “detachment limited” function of the shear stress exerted by the flow on the bed, or as a “transport limited” function of the sediment flux capacity of the flow. These two models predict similar channel profiles when erosion rates are constant in space in time, but starkly contrasting behavior in transient settings. Traditionally detachment limited models have been used for bedrock rivers, whereas transport limited models have been used in alluvial settings. In this study we demonstrate that rivers incising into a substrate of loose, but very poorly sorted relict glacial sediment behave in a detachment limited manner. We then develop a methodology by which to both test the appropriate incision model and constrain its form. Specifically we are able to tightly constrain how incision rates vary as a function of the ratio between sediment flux and sediment transport capacity in three rivers responding to deglaciation in the Ladakh Himalaya, northwest India. This represents the first field test of the so-called “tools and cover” effect along individual rivers

    Polydopamine-coated TiO2 nanotubes for selective photocatalytic oxidation of benzyl alcohol to benzaldehyde under visible light

    No full text
    International audienceTiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O2 .- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde. Copyright © 2016 American Scientific Publishers All rights reserved
    corecore