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Abstract 4 

The Hatay Graben is one of three easternmost basins in the Mediterranean that preserve sediments that 5 

span the Miocene-Pliocene boundary, including gypsums from the Messinian Salinity Crisis (MSC). Here 6 

we integrate existing data and present new sedimentological and micropalaeontological data to investigate 7 

the palaeoenvironments of late Miocene to early Pliocene deposits and place this important area into a 8 

regional stratigraphic framework. Six sections are described along a ~ W – E transect illustrating the key 9 

features of this time period. Late Miocene (Pre-MSC) sediments are characterised by open marine marls 10 

with a benthic foraminiferal fauna suggestive of water depths of 100 – 200 m or less.  Primary lower 11 

gypsum deposits are determined to be absent from the graben as sedimentological and strontium isotopes 12 

are characteristic of the resedimented lower gypsums.  The intervening Messinian erosion surface is 13 

preserved near the basin margins as an unconformity but appears to be a correlative conformity in the 14 

basin depocentre. No Upper Gypsums or ‘Lago–Mare’ facies have been identified but available data do 15 

tentatively suggest a return to marine conditions in the basin prior to the Zanclean boundary. Sediments 16 

stratigraphically overlying the Messinian gypsums and marls are coarse-grained sandstones from coastal 17 
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and Gilbert-type delta depositional environments. The Hatay Graben is not only strikingly similar to 18 

Messinian basins on nearby Cyprus but also to the overall model for the MSC, demonstrating the 19 

remarkable consistency of palaeoenvironments found in marginal basins across the region at this time.  20 

This research also raises questions as to the timing of the Mediterranean reflooding and the significance 21 

of the widespread mega-breccias of the resedimented gypsum deposits. 22 

 23 

Keywords: Messinian Salinity Crisis; Turkey; Eastern Mediterranean; Gypsum; foraminifera; Gilbert-type 24 

delta. 25 

 26 

1. Introduction 27 

 The Messinian Salinity Crisis (MSC) was a dramatic event (~ 5.9 Ma) that affected the whole 28 

Mediterranean region when the seaways connecting the Mediterranean Basin to the Atlantic Ocean closed 29 

due to uplift in the Bectic Arc/Moroccan Rif region (e.g., Duggan et al., 2003; Sierro et al., 2007). Isolation 30 

from the Atlantic Ocean resulted in the deposition of thick evaporite deposits in basin depocentres and 31 

significant erosion around the fringes of the Mediterranean. Studies of onshore Messinian strata preserved in 32 

basins described as either marginal or peripheral (to the deep, central Mediterranean Basins; Fig. 1) have 33 

provided much information on the sedimentology, palaeontology and geochemistry of the period, especially 34 

when combined with recent high-resolution cyclostratigraphic studies (e.g., Hilgen and Krijgsman, 1999; 35 

Sierro et al., 2001; Hilgen et al., 2007; Manzi et al., 2013).   36 

 The MSC resulted in the deposition of characteristic sedimentary units both in marginal (shallow) 37 

and deep water environments; however, until recently there were a number of contrasting models that 38 

attempted to link marginal and deep basin stratigraphy (Butler et al., 1995; Clauzon et al., 1996; Riding et 39 

al., 1998; Krijgsman et al., 1999; Rouchy and Caruso, 2004; Roveri et al., 2008b). A new scenario proposed 40 

by the CIESM (the Mediterranean Science Commission) consensus report (2008) develops a correlation 41 

scheme that integrates recent sedimentary facies and stratigraphic data from the marginal basins with deep 42 

basin seismostratigraphy in order to try to resolve these correlation problems. Furthermore, Roveri et al. 43 

(2014a, b) demonstrate that strontium isotope ratios (
87

Sr/
86

Sr) provide additional stratigraphic constraints as 44 

distinct populations of 
87

Sr/
86

Sr values have been documented during the different phases of the MSC event.  45 

This revised Messinian scenario is described within the framework of a 3-stage stratigraphic model 46 
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constructed mainly with observations from the marginal to intermediate basins exposed onshore in Sicily and 47 

in the Northern Apennines (CIESM, 2008; Roveri et al., 2014a, b). 48 

However, despite the extensive ‘back-catalogue’ of work on the Messinian stage (e.g., Roveri et al., 49 

2014a), many studies from the easternmost extent of the Mediterranean have focussed on Cyprus (e.g., 50 

Robertson et al., 1995; Krijgsman et al., 2002; Kouwenhoven et al., 2006; Orszag-Sperber et al., 2009; 51 

Manzi et al., 2015) and adjacent IODP data (e.g., Blanc-Valleron et al., 1998; Pierre et al., 1998), with 52 

limited data from southern Turkey (Melinte-Dobrinescu et al., 2009; Darbaş and Nazik, 2010; Poisson et al., 53 

2011; Cipollari et al., 2013; Faranda et al., 2013; Radeff et al., 2015). In this paper we focus on late Miocene 54 

and early Pliocene sediments of the Hatay Graben (southern Turkey), previously identified by Boulton et al. 55 

(2007, 2008) and Tekin et al. (2010). The Hatay Graben is one of the easternmost marginal basins (the other 56 

being the Syrian Nahir el-Kabir half-graben) that records evidence from this period, and is the ideal location 57 

for investigating the progression of the Messinian salinity crisis and the Zanclean reflooding event in the 58 

most distal part of the Eastern Mediterranean basin (Fig. 2). Here we examine key Tortonian, Messinian and 59 

Zanclean sections, some of which have been previously documented by Boulton et al. (2007) or Tekin et al. 60 

(2010), along with new sedimentological and micropalaeontological data to develop a facies and 61 

palaeoenvironmental model for the Hatay.  The aims of the study are to: a) investigate the nature of the 62 

Miocene-Pliocene boundary in this marginal basin, b) place these sediments into the revised stratigraphy of 63 

the MSC (e.g., CIESM, 2008; Roveri et al., 2014a,b), and c) test the applicability of this model in the 64 

easternmost Mediterranean.   65 

 66 

2. Messinian Stratigraphic Framework 67 

  The Global Stratotype Section and Point (GSSP) of the base Messinian is defined as the first 68 

occurrence of the planktic foraminifera Globorotalia miotumida in the Oued Akrech section (Morocco) at 69 

7.25 Ma (Hilgen et al., 2000). The top of the Messinian is defined by the Zanclean GSSP at Eraclea Minoa 70 

(Sicily), coincident with the base of the Trubi marls and the reflooding of the Mediterranean at 5.33 Ma. 71 

The early Messinian (7.25 to 5.97 Ma) is characterised by the change in circulation patterns and 72 

water chemistry caused by progressive restriction of the Atlantic-Mediterranean corridors. Early Messinian 73 

sediments are usually characterized by cyclical stacking pattern, which include diatomites and sapropels 74 
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(e.g., Kouwenhoven et al., 2006), and show stepwise reductions in the diversity of planktic foraminifera 75 

(Sierro et al., 1999; Blanc-Valleron et al., 2002; Sierro et al., 2003; Kouwenhoven et al., 2006). These 76 

changes in diversity have been interpreted as the effect of 400 kyr orbital forcing superimposed on the 77 

tectonically controlled closure of the connecting oceanic gateway (Kouwenhoven et al., 2006). 78 

 Stage 1 (5.97 – 5.6 Ma) of the MSC is characterised by the widespread onset of evaporite 79 

precipitation only in the shallow-water marginal basins (Lugli et al., 2010; Manzi et al., 2013); this unit is 80 

termed the Primary Lower Gypsum (PLG) (Fig. 1). These deposits typically consist of rhythmically-81 

deposited gypsum interbedded with shales. Although Vai and Ricchi Lucchi (1977) originally interpreted 82 

these as sabkha deposits with subaerial exposure near the top, the recent work of Lugli et al. (2010) 83 

concludes that deposition was entirely subaqueous. Below ~ 200 m water depth, in intermediate and deep 84 

water basins, lateral facies changes to dolomites and/or barren organic-rich shales have been observed (e.g., 85 

Manzi et al., 2007; Lugli et al., 2010; Dela Pierre et al., 2011, 2012). A lack of evaporite deposition in deeper 86 

water is possibly due to under-saturation with respect to sulphate in the water column at this time (De Lange 87 

and Krijgsman, 2010). The top of the PLG deposits is normally an unconformity termed the ‘Messinian 88 

Erosional Surface’ (MES), the result of regression during the next stage of the MSC. In some marginal 89 

basins the MES can cut PLG and older deposits and the correlative conformity of the MES can be traced into 90 

deep basins at the base of the RLG unit (Roveri et al., 2008a, b) 91 

 Stage 2 (5.6 – 5.55 Ma) represents the acme of the MSC when widespread subaerial erosion took 92 

place forming the MES possibly as a result of the high-amplitude base-level fall of the Mediterranean 93 

(CIESM, 2008). In shallow marginal basins, subaerial exposure led to erosion and a hiatus of variable 94 

amplitude. Eroded material was transported offshore and sediment deposition at this time was dominated by 95 

clastic gypsum deposits that form the Resedimented Lower Gypsum unit (RLG; Roveri et al., 2008a, b). A 96 

number of factors (i.e., pressure release and fluid migration - Lazar et al., 2012; crustal loading - Govers et 97 

al., 2009; tectonic instability – Robertson et al., 1995) have been proposed as the cause of slope instability 98 

and gravity failure resulting in mass-wasting deposits and gravity flows of the RLG deposits.   99 

 Stage 3 (5.55 – 5.33 Ma) is thought to have been a period of complex water exchange between the 100 

Atlantic Ocean and Paratethys (Orszag-Sperber, 2006; Rouchy and Caruso, 2006; Roveri et al., 2008b), 101 

which resulted in selenite and cumulate gypsum deposition in shallow marginal basins in the central and 102 
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eastern Mediterranean (i.e., Sicily and Cyprus). The Upper Gypsum deposits are superficially similar to the 103 

PLG deposits, yet facies analysis indicates formation in very shallow water (Manzi et al., 2007, 2009; Lugli 104 

et al., 2008; Roveri et al., 2014a). Furthermore, distinctively low Sr isotope values (compared to oceanic 105 

values) have been measured from both the gypsum and fossils of these sections, indicating substantial 106 

freshwater input (Flecker and Ellam, 2006; Roveri et al., 2014a, b). By contrast, in northern and western 107 

marginal basins evaporite-free clastics formed in shallow to deep-water environments with characteristic 108 

brackish to fresh water fauna often referred to as the ‘Lago Mare’ biofacies (Ruggieri, 1967; Bassetti et al., 109 

2004; Orszag-Sperber, 2006; Grossi et al., 2008, Roveri et al., 2008b; Popescu et al., 2015). 110 

 The end of the MSC at 5.33 Ma is marked by the return to fully marine conditions and defines the 111 

base of the Pliocene epoch (Van Couvering et al., 2000). The boundary is almost universally recognised as a 112 

near synchronous flooding surface (Iaccarino et al., 1999a; Gennari et al., 2008) as a result of the 113 

catastrophic flood of Atlantic waters into the Mediterranean basin (e.g., Hsu et al., 1973; Blanc, 2002; Meijer 114 

and Krijgsman, 2005; Garcia-Castellanos et al., 2009; Periáñez and Abril, 2015). The re-establishment of this 115 

Atlantic connection is likely the result of retrogressive erosion of the Gibraltar Strait rather than tectonically 116 

driven subsidence (Loget and Van Den Driessche, 2006; Estrada et al., 2011).  In many marginal basins, the 117 

Zanclean sediments have been recorded as being relatively deep marine facies overlying Messinian 118 

evaporites or Lago Mare facies sediments.  Gilbert-type fan deltas, possibly of Zanclean-age, are also 119 

commonly identified infilling Messinian fluvial canyons cut into underlying deposits (Bache et al., 2012).  120 

However, there are outstanding questions on the nature and progression of the ‘Lago Mare’ event and the 121 

Zanclean reflooding, especially regarding the difference between deep and peripheral basins that require 122 

further investigation (Popescu et al., 2015). 123 

 124 

 125 

3. Geological setting and stratigraphy 126 

 127 

The Hatay Graben (also known as the Hatay Basin, the Antakya-Samandag Basin, or the Antakya 128 

Fault Zone) in southern Turkey is a transtensional half-graben that developed during the late Miocene to 129 

Pliocene as a result of the westward extrusion of Anatolia (Boulton et al., 2006; Boulton and Robertson 130 

2008; Boulton and Whittaker, 2009) and the cessation of subduction along the Arabian/Eurasian margin 131 
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(Robertson et al., 2001).  The present day half-graben developed due to the reactivation of basement 132 

structures upon a peripheral foreland basin sequence of Miocene age, consisting of lower Miocene fluvial 133 

conglomerates (Balyatağı Formation), middle Miocene shelf limestones (Sofular Formation) and upper 134 

Miocene (Tortonian) marls and sandy marl (Nurzeytin Formation) (Boulton and Robertson, 2007; Boulton et 135 

al., 2007) (Figs. 3, 4). Several Messinian evaporite locations have been identified in the area (Boulton and 136 

Robertson, 2007; Boulton et al., 2007; Tekin et al., 2010) forming the Vakıflı Formation (Fig. 3).  The 137 

Vakıflı Fm. is exposed within the graben margins and also within a perched basin between two normal faults 138 

on the southern basin margin (near Sebenoba; Fig. 3).  This uplifted location indicates that the main southern 139 

graben bounding faults did not yet have significant relief prior to and during the deposition of this unit 140 

(Boulton et al., 2006).  Therefore, it is likely that during the late Miocene the basin occupied a wider 141 

geographic extent than at the present day and may have been connected to the Iskenderun basin to the north 142 

(Boulton et al., 2006).   Overlying the Vakıflı evaporites is a sequence of Pliocene sandstone and marls 143 

(Samandağı Formation) that are exposed only within the margins of the present active graben, suggesting 144 

that the boundary faults had developed sufficiently to influence sediment deposition by early Pliocene time 145 

(Boulton et al., 2006; Boulton and Robertson, 2008).  The base of the Samandağı Formation is variably 146 

conformable to unconformable with the underlying Nurzeytin or Vakifli Formations.   147 

The sediments preserved in the Hatay Graben; therefore, allow the investigation into the progression 148 

of palaeoenvironments across the Miocene-Pliocene boundary in the easternmost Mediterranean and provide 149 

a key test to proposals for a universal stratigraphic model of the basin (CIESM, 2008).   150 

  151 

 152 

4. Methodology 153 

For micropalaeontological analysis, twenty-six marl samples from the Ortatepe Section (location 2, Fig. 3) 154 

and four marl samples from location 4 (Fig. 3) were disaggregated using the ‘solvent method’ of Brasier 155 

(1980). The samples were sieved through a 63 µm sieve, dried and benthic foraminifera were picked from 156 

the >63 µm size-fraction. In order to determine the minimum number of specimens to be picked per sample, 157 

rarefaction curves (number of species versus number of specimens) were calculated for a number of samples. 158 

Species-specimen curves become parallel to the species axis at ~150 specimens, so this was considered to be 159 
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the minimum number of specimens to be picked per sample. In most cases, >200 specimens were picked per 160 

sample, although in one case (sample OR7-33) this was not achieved (total 141 specimens) so this sample 161 

was excluded from the analysis. Benthic foraminiferal species diversity was recorded in terms of the Fisher’s 162 

alpha index (Fisher et al., 1943). Alpha index values were read off the base graph in Williams (1964, p. 311) 163 

by plotting the number of species against the number of individuals in a sample. The percentage of planktic 164 

foraminifera relative to the total foraminiferal assemblage (planktic + benthic) in the >63 µm size-fraction 165 

was recorded for each sample. Benthic foraminifera were identified according to Cimerman and Langer 166 

(1991) and Milker and Schmiedl (2012). 167 

 168 

5. Observations 169 

In this section, six representative sections are described from west to east illustrating the stratigraphy of the 170 

late Miocene to Pliocene sediments of the Hatay Graben.  Fourteen sedimentary facies (excluding evaporite 171 

facies – see Tekin et al., 2010 for a full description of these) have been identified in exposures attributed to 172 

Miocene-Pliocene age, detailed sedimentary descriptions and interpretation of each facies is given in Table 173 

1.  Facies abbreviations follow convention with G for conglomerates, S for sandstones, M for siltstones and 174 

mudstones. 175 

 176 
 177 

5.1 Mağaracik (Location 1, Fig 3) 178 

Approximately 10 m of cross-bedded, poorly lithified, sandstone is exposed in a strike parallel face in a 179 

quarry to the west of Samandağ (Fig. 5; UTM Zone 35 S; 0765400/4000510).  These Samandağı Fm., 180 

sandstones unconformably overlie the upper surface of the Sofular Formation (middle Miocene limestone), 181 

which is eroded and bored at this location dipping down under the sandstone to the east.  At the base of the 182 

outcrop, the litharenite is medium- to coarse-grained to pebbly (Facies Scr; Table 1) sandstone with bi-183 

directional cross-beds.  The outcrop as a whole coarsens upwards with coarse pebbly, cross-bedded 184 

sandstone and lenses of conglomerate (Facies Gm; Table 1) present at the top of the section.  There is some 185 

evidence of bioturbation, as rarely vertical burrows are present, and small fragments of bivalves (e.g., 186 

Ostrea, Cardium) can be observed.     187 
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5.1.1 Interpretation 188 

The presence of the small bivalve fragments (Ostrea, Cardium) indicates a marine origin for these sediments.  189 

Coarsening upwards sequences are classic deltaic indicators (Reading and Collinson, 1996), and bi-190 

directional currents are also very common in such environments, typically the result of tidal influences in a 191 

shoreface depositional setting. The lower cross-bedded sandstones may belong to the distributary mouth-bar 192 

facies, while the conglomerate lenses could be channel-fill deposits as the delta becomes more fluvially 193 

influenced as water depth shallows.   Therefore, we interpret this sequence as gravelly-sandy foresets of a 194 

Gilbert-type fan delta (Reading and Collinson, 1996).   195 

Currently the age of these deposits is interpreted as Pliocene, in the absence of other data owing to 196 

their stratigraphic position.  The basal unconformity is interpreted as the Messinian Erosion Surface that 197 

formed during the acme of the MSC as the underlying middle Miocene limestones are highly eroded at this 198 

horizon, presumably by a high-amplitude base-level fall during the late Miocene.  Therefore, the Samandağı 199 

sandstones may have been deposited subsequently possibly during the Zanclean transgression but equally 200 

these sediments could date to later in the Plio-Quaternary or to the latest Messinian.  201 

  202 

5.2 Ortatepe Section (location 2; Fig. 3) 203 

Incised Quaternary river terraces near the town of Samandağ expose sections of the Nurzeytin and  204 

Samandağ Formations.  On the eastern side of Ortatepe (UTM Zone 36 S; 769653 E; 3998196 N), 205 

excavation to form a field has revealed a exposure ~ 100 m in length and ~ 20 m high, previously described 206 

by Boulton et al. (2007).  The lower part of the section exposed to the south, is composed of fossiliferous, 207 

interbedded, thin (< 20 cm) sand beds and interbedded marl of the Nurzeytin Fm., (Facies M and MS; Table 208 

1) gently dipping to the southeast.  The fossil content is variable, with macrofossils such as marine 209 

gastropods, including specimens from the Cypraeidae, Ellobiidae and Conidae families, and bivalves 210 

including Ostrea sp. and Corbula sp., present, while microfossils, including ostracods, such as Cyprideis 211 

spp., Aurila spp., and Loxoconcha spp., and benthic and planktic foraminifera, including Globigerinoides 212 

spp., are present near the top of the section (Boulton et al., 2007).  Further micropalaeontological analysis 213 

(benthic foraminifera) was undertaken on this section as detailed below. 214 

Above the interbedded marl and fine-grained sandstones is an abrupt transisition along a gently 215 

dipping planar horizon into medium-grained, massive micaceous sandstone (Facies Sm; Table 1) of the 216 
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Samandağı Fm., forming moderately dipping (20°) beds that downlap onto the top of the underlying marl 217 

(Fig. 6).  Above this interval, the lithology is similar but the bedding is disturbed and contorted (Facies Smc; 218 

Table 1).  Rip-up clasts of parallel laminated mud are present along with horizons of shelly conglomerate 219 

containing well-rounded sandstone clasts, bivalves and marine gastropods (e.g., Neverita josephina, 220 

Ringicula sp., Demoulia sp., Calliostoma sp., Turris sp.).  Small (~ 5 m) laterally discontinuous beds (Facies 221 

Sch; Table 1) and further contorted horizons of facies Smc are present nearby (Facies Smc; Table 1). 222 

5.2.1 Micropalaeontological results 223 

The preservation of benthic foraminifera is generally moderate to good in the majority of samples. 224 

Some samples contain broken specimens and some contain specimens with iron staining (OR7-20, 24, 26 225 

and 33). Sample OR7-33, which was excluded from the analysis, contained few individuals, which are 226 

poorly preserved and large in size. 227 

The top ten ranked species in all samples overall account for 72.7% of the 107 identified species. 228 

The two most abundant species, Rosalina globularis and Asterigerinata mamilla, occur in every sample and 229 

together account for a mean of 33.5% of all species throughout the studied interval. Their relative 230 

abundances vary throughout the interval and overall show an increase up through the section (Fig. 7). The 231 

percentage of ‘high-productivity/low-oxygen species’ (sum of % Bolivina spp., Brizalina spp., Bulimina 232 

spp., Melonis affinis and Uvigerina peregrina) (e.g., Lutze and Coulbourn, 1984; Sen Gupta and Machain-233 

Castillo, 1993) shows an overall decrease from mean values of 26% to 14% through the section (Fig. 7). The 234 

‘high-productivity/low-oxygen’ species group is dominated by Bolivina spp. and Brizalina spp.; whilst 235 

Bulimina spp. (0.4% of total), M. affinis (0.02%) and U. peregrina (0.05%) have very low abundances 236 

throughout the studied interval and only occur sporadically. The percentage of miliolids (Adenosina spp., 237 

Cornuspira involvens, Cycloforina spp., Miliolinella spp., Pyrgo spp., Quinqueloculina spp., Spiroloculina 238 

spp.) fluctuates throughout the interval with lower abundances (<2%) occurring in the middle part of the 239 

section (OR7-18, 4.25 m to OR7-28, 6.75 m) (Fig. 7). The planktic foraminifera are dominated by small, 240 

juvenile specimens in the studied > 63 µm size fraction.  Higher percentages of planktic foraminifera occur 241 

in the middle part of the section (mean 40%, OR7-16, 3.75 m to OR7-30, 7.25 m) compared with the interval 242 

before (mean 25%) and after (mean 25%) (Fig. 7).  Diversity fluctuated over the studied interval, although 243 

there appears to be a slight temporal trend towards lower values (Fig. 7). 244 
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 245 

5.2.2 Interpretation  246 

The benthic foraminiferal assemblages (dominated by Rosalina, Asterigerinata, Haynesina, 247 

Elphidium, Ammonia) indicate that the deposition of the marl succession occurred in an inner shelf 248 

environment (0-100 m water depth) (Murray, 1991, 2006). This is supported by the alpha index values ( 9-249 

15), which fall within the range typical of inner shelf environments ( 3-19) (Murray, 1991). Barbieri and 250 

Ori (2000) found a similar benthic foraminiferal fauna dominated by ammoniids, elphidiids and epiphytes 251 

from the Neogene of northwest Morocco that they interpreted as indicative of an inner neritic (0-30 m) 252 

environment. The percentage of planktic foraminifera, however, could suggest a middle shelf environment 253 

(Murray, 1976), and water depths of up to 200 m have been proposed by Boulton et al. (2007). However, the 254 

high proportion of juvenile planktic foraminifera supports shallower water depths of middle to inner shelf 255 

environments (Murray, 1976). The apparent contradiction in the palaeoenvironmental reconstruction could 256 

be a function of the size-fraction used in this study compared with other studies. Many studies calculate the 257 

percentage of planktic foraminifera (or P:B ratios) in the >125 μm or >150 μm size-fraction, but our study of 258 

the >63 μm size-fraction would potentially overestimate the proportion of planktic foraminiferal specimens, 259 

particularly if smaller species and/or juveniles are abundant, compared with larger size-fractions. The 260 

increase in the percentage of planktic foraminifera in the middle part of the succession may indicate that the 261 

water depth increased at this time, and the concomitant decrease in the abundance of miliolids, which are 262 

generally more abundant in shallower water (Murray, 1991, 2006), generally supports this observation.  263 

In the modern Mediterranean Sea, the two most abundant species, R. globularis and A. mamilla, are 264 

known to be epiphytic species that are temporarily attached and make up 10-45% of assemblages on 265 

microhabitats with a high sediment content (Posidonia rhizomes, algae) (Murray, 2006). It is known that the 266 

distribution of epiphytic foraminiferal assemblages is controlled by substrate, light, availability of plant 267 

substrates and food (Murray, 2006); therefore the observed changes in the abundance of these species are 268 

most likely associated with one or more of these factors. If seagrasses were present, and thus supporting the 269 

epiphytic benthic foraminifera, then the maximum water depths allowing photosynthesis would be 20 m 270 

(Zieman and Zieman, 1989). The increase in abundance of R. globularis and A. mamilla up through the 271 
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section is not likely to be associated with increased food fluxes because the percentage of species indicative 272 

of ‘high-productivity/low-oxygen’ conditions decreases. 273 

When combined with the sedimentary data, the majority of the marl facies of the Nurzeytin Fm. 274 

represent background deposition from suspension settling within the basin; the basin floor was possibly 275 

colonised by seagrass (Posidonia sp.) supporting a benthic community in water depths of < 100 m and 276 

maybe < 20 m.  The layered nature of the shelly material in the lower marls and thin sandstone beds are 277 

suggestive of reworking by high-energy events, possibly storms, turbidity or grain flows, and are 278 

characteristic of downslope transport within the basin and may represent a prodelta environment.  Prodelta 279 

facies associations are typically dominated by low-gradient fine-grained deposits from suspension fall-out 280 

and low-density turbidite flows (i.e., Backert et al., 2010), representing the basin environment in front of 281 

deltas.  The presence of planktic and benthic foraminifera, marine bivalves and gastropods indicates a marine 282 

setting for the delta; however, some but not all of the ostracods (Boulton et al., 2007) indicate brackish water 283 

conditions (i.e., Cyprideis sp).  These were likely reworked from the nearshore zone downslope.  Evidence 284 

for downslope reworking can also be inferred for some foraminifera due to the presence of abraded and/or 285 

fragmented tests.     286 

The decimetre-scale beds of the Samandağı Fm., observed to down-lap onto the lower marl and 287 

sandstones, represent avalanche foresets of a delta that is prograding into relatively deep water with a high 288 

sediment supply from feeder systems (Reading and Collinson, 1996).  The disturbed and contorted bedding 289 

observed above the foresets is the result of sediment slumping due to downslope instability as a result of 290 

either oversteepening of the slope close to the angle of repose by bedload deposition or tectonic activity 291 

within the basin.  The channelised sands above may represent the lowest-most beds of the subaerial topset of 292 

the deltaic system.  This facies association is characteristic of a Gilbert-type delta and is remarkably similar 293 

to the Gilbert-type deltas described elsewhere in the Mediterranean during the Zanclean (i.e., Melinte-294 

Dobrinescu et al., 2009).   295 

Boulton et al. (2007) identified the Messinian-Zanclean boundary within the marls due to first 296 

occurrence of Globorotalia margaritae near the top of the section; however, we have found no further age-297 

diagnostic fauna in this study to corroborate this interpretation.  The biota of the marl and sandstone do 298 

indicate fully marine conditions, this is supported by the presence upper Miocene ostracods Cyprideis 299 
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anatolica and C. torosa and the absence of the post-MSC ostracod C. agrigentina  (Boulton et al., 2007) 300 

used to indicate Lago Mare facies (Faranda et al., 2013).  The Ortatepe location is also stratigraphically 301 

higher than nearby gypsum outcrops, which all suggests that these marls represent latest Messinian to earliest 302 

Pliocene marine conditions in the Hatay Graben.  The overlying Gilbert-type delta was therefore deposited 303 

subsequently, perhaps during the Zanclean, although we note that the presence of specific facies is not age-304 

diagnostic per se. 305 

 306 

5.3 Mizrakli (location 3; Fig. 3) 307 

To the east of the villages of Nurzeytin and Mizrakli there is a well-exposed sedimentary succession (as 308 

measured from UTM Zone 35 S; 0769443/4003491 to 0230000/4002521) (Boulton et al., 2007).  Boulton et 309 

al. (2007) report Sr isotope measurements in the range of 0.708878 – 0.708925, confirming a Tortonian age 310 

of 8.7 – 9 Ma for the lower to intermediate part of the section.  The presence of gypsum deposits at the top of 311 

the succession indicates a Messinian age for the end of the section.  Although the base of the Nurzeytin 312 

Formation is not exposed, the lowermost sediments observed are interbedded grey marl and grey lime 313 

mudstone (Facies MS; Table 1). Beds are 30-130 cm thick and fine upwards.  The beds are bioturbated and 314 

horizontal (to bedding) burrows were observed; fragments of body fossils are also present and include 315 

bivalve, gastropod and plant fragments as well as planktic foraminifera.  These mudstones are replaced 316 

upwards after 10-15 m by a dominantly marl lithology (Facies M; Table 1) with only occasional sandstone 317 

interbeds (Facies Ss; Table 1), which occur singly or in packages.  Isolated interbeds, often calcarenites <1 m 318 

thick, exhibit sharp bases and tops but lack sedimentary structures.  Interbeds occurring in packages tend also 319 

to be calcarenites, <50 cm thick, with sharp bases, that then fine upwards and grade into a marl bed above.  320 

Sedimentary structures such as parallel laminations, cross-laminations, ripple marks, flute casts and rip-up 321 

clasts are present.  Additionally slumped horizons are present (Facies Smc; Table 1).  The top of the logged 322 

sequence is capped by ~ 10 m of gypsum following a poor exposed interval of marl.  The lower part of the 323 

gypsum sequence is formed of 5 m of in situ bedded selenite, overlain by a gypsrudite formed of large 324 

angular blocks (>2 m) laminated alabastrine and selenite gypsum supported in a matrix of gypsiferous sandy 325 

marl.   326 

 327 
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5.3.1 Interpretation 328 

 The Tortonian marls represent settling from suspension within a basinal setting. The water depth is 329 

difficult to calculate but probably initially exceeded 100 m in depth (Boulton et al., 2006).  The interbeds of 330 

calcarenite observed likely represent low density turbidite deposits based upon the range of sedimentary 331 

structures present and the overall fining-upward nature of the beds.  The presence of turbidity currents along 332 

with slumped beds is indicative of down-slope transport of sediments that would have reworked material 333 

from the near-shore environment into deeper water.  Unfortunately, the lack of palaeocurrent indicators does 334 

not allow discrimination between transport offshore into the Levant Basin or into the local basinal 335 

depocentre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  336 

The marls pass apparently conformably upwards to Messinian gypsum deposits, although the 337 

boundary is not exposed.   The gypsum rudite beds, composed of broken selenite crystals, are interpreted as 338 

the result of mass flows in a slope setting. Tekin et al. (2010) suggested that tectonic activity at the basin 339 

margin could have initiated these flows but did not rule out climatic or water level fluctuations leading to 340 

slope instability.  The upper chaotic unit is interpreted by Tekin et al. (2010) as the result of active tectonics, 341 

by comparison to similar facies reported by Robertson et al. (1995) from southern Cyprus and by Manzi et 342 

al. (2011) in Sicily.  343 

   344 

5.4 Main Road Quarry Section (location 4; Fig. 3)   345 

On the main Antakya-Samandağ road, a small quarry (UTM Zone 35 S; 0237433/4004350) reveals the 346 

contact between the Nurzeytin and Samandağ Formations (Fig. 8).  The base of the quarry is composed of 347 

blue-grey marls (Facies M; Table 1) and fining upwards beds of very fine-grained sandstone 20 – 50 cm 348 

thick (Faces MS; Table 1).  Fragmented woody material is common within these sandstone beds but 349 

sedimentary structures are lacking.  The boundary between the Nurzeytin Fm., marls and the overlying 350 

orange-weathering sandstones of the Samandağı Formation is erosive with a slight angular discordance.  The 351 

coarse-grained sandstones are up to 30 cm thick, dip towards the southwest, and are laterally discontinuous. 352 

Micropalaeontological analyses of the benthic foraminifera on four samples (MBP 1-4) from the 353 

underlying Nurzeytin Formation show generally poor preservation with high number of undetermined and 354 

reworked (as determined due to abrasion and/or fragmentation) specimens (about 22%). The assemblages are 355 

dominated by Bolivina spp. and Brizalina spp. (together about 30%), where B. spathulata (13%) and B. 356 
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dilatata (5%) are the most abundant species. Other relatively common species are Bulimina spp. (5.2%, 357 

dominated by B. aculeata and B. elongata), together with Cibicides lobatulus (5%), Cibicidoides spp. 358 

(4.7%), Cassidulina obtusa (3.7%), Eponides spp. (3.2%), Rosalina spp. (3.1%), Gyroidinoides spp. (2.2%), 359 

Valvulineria spp. (2.2%), Anomalinoides spp. (2.1%), and Globocassidulina subglobosa (2.0%). Others 360 

species with abundances of between 1 and 2% are Fursenkoina spp., Ammonia spp., Epistominella vitrea, 361 

and Melonis affinis, whereas miliolids, Elphidium spp., A. mamilla and Uvigerina spp. are less than 1%.  362 

Planktic foraminifera (including Turborotalita multiloba and Neogloboquadrina acostaensis) are quite 363 

abundant, comprising about 50% of the total foraminifera.  364 

5.4.1 Interpretation 365 

The benthic foraminiferal assemblages (dominated by Bolivina and Brizalina, together with 366 

Bulimina, Cibicides, Cibicidoides and Cassidulina) indicate that the deposition of the lower part of the 367 

succession occurred in an outer shelf-upper slope environment (100-200 m water depth) (Murray, 1991, 368 

2006). This is supported by a high abundance of planktic foraminifera (about 50%), which is typical for this 369 

environment. The high percentage of ‘high-productivity/low-oxygen species’ (especially Bolivina spp., 370 

Brizalina spp., and Bulimina spp.), clearly indicate a low oxygen environment with high flux of organic 371 

matter (e.g., Lutze and Coulbourn, 1984; Sen Gupta and Machain-Castillo, 1993). The planktic foraminifera 372 

Turborotalita multiloba is probably an ecophenotypic of Turborotalita quinqueloba, and according to 373 

Krijgsman et al. (1999), Sierro et al. (2001) and Lourens et al. (2004) its first influx occurs at 6.42 Ma, 374 

predating the Neogloboquadrina acostaensis sinistral to dextral coiling change at 6.35 Ma. The presence of 375 

N. acostaensis dextral in the samples confirms that the studied interval belong to the MMi 13c T. multiloba 376 

Interval Zone spanning from 6.35 Ma to 5.96 Ma (Lourens et al., 2004), which is the last Mediterranean 377 

Biozone in the Messinian before the non-distinctive zone corresponding to the MSC.  378 

The overlying sandstone beds of the, presumably Zanclean, Samandağ Formation cut 379 

stratigraphically downwards to the southwest (seawards) and are lacking in fossil material.   The similarity of 380 

these sandstones to the upper sands present in the other described localities implies that these could be the 381 

topset beds of a fan-delta system.  382 

 383 
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5.5 Sutası Section (location 5; Fig. 3) 384 

A well-exposed section of the Samandağ Formation dating to the latest Miocene to earliest Pliocene 385 

(Boulton et al., 2007) is exposed near Sutası (Fig. 3, location 2) along a road cutting ~ 650 m long and ~ 10 386 

m high.  The base of the section is dominated by fossiliferous, orange-coloured, lithic calcarenite (Facies Ss; 387 

Table 1), with bedding thickness 0.25-3.00 m thick (Fig. 9a).  Shell fragments are common and are mostly 388 

composed of bivalve and gastropod fragments with occasional articulated bivalves forming shell and pebble 389 

lags. Preliminary analyses of the benthic foraminifera from the Sutası section show that the assemblages are 390 

dominated by Ammonia spp., together with Nonionellina spp., Elphidium spp., Cibicides refulgens, 391 

Asterigerinata mamilla, Rosalina globularis, and others.  Planktic foraminifera are also present, comprising 392 

<25% of the total foraminifera.  Ostracods are also represented by Cyprideis torosa, C. anatolica, Aurila 393 

convexa, A. speyeri, Ruggieria tetraptera and other long lasting species (Boulton et al., 2007).    Fragmentary 394 

plant material is also present.  Interbedded with these sands are thin mud and limestone layers < 25 cm thick. 395 

There is a change in the character of the sediments at ~ 30 m up the section (Fig. 9a); the lithic 396 

calcarenite becomes coarser-grained with common trough and planar cross-bedding (Facies Scr; Table 1), 397 

yet the thickness of the bedding decreases with many beds <10 cm thick.  The overlying beds exhibit planar 398 

cross-bedding, parallel-laminations and ripple cross-lamination.  These are interbedded with two lenticular 399 

polymict clast-supported conglomerates up to 75 cm thick (Facies Gc; Table 1) with coarse sandstone and a 400 

1 m thick mottled pink mudstone above (Table 1).  Bioturbation is generally absent in this interval and, as a 401 

result, sedimentary structures are well preserved.   Macrofossil and microfossil material is very rare and 402 

fragmented when present. 403 

Above this interval of diverse structures, the uppermost part of the sequence is composed of > 15 m 404 

of medium-grained sandstone with little or no fossiliferous material and mostly lacking in sedimentary 405 

structures, although low-angle cross-bedding can be observed in some horizons (Facies Sb; Table 1). This 406 

massive sandstone characterises the majority of the Pliocene succession in many outcrops and is generally 407 

variably cemented with nodules (similar to doggers) present throughout. 408 

 409 
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5.5.1 Interpretation  410 

The lower part of the section is composed of medium-grained sandstones with sharp, often erosional, 411 

bases that fine upwards, with parallel-laminations and planar cross-lamination in some horizons.  Pebble and 412 

fossils lags are also commonly present formed as a result of low-relief scours and currents. The bioturbation 413 

suggests that between phases of rapid deposition sedimentation was relatively slow allowing colonisation of 414 

the substrate.  This facies association is typical of coarse-grained lower shoreface environments (Reading 415 

and Collinson, 1996; Clifton, 2006). 416 

The lower shoreface passes vertically upwards into the upper shoreface facies association with 417 

trough cross-bedded sandstones, the result of oscillatory motion related to the primary onshore waves and 418 

secondary back-flow or the result of tidal influences (Dashtgard et al., 2012).   The observed increase in 419 

grain-size is also common from the lower to the upper shore face (Reading and Collinson, 1996).   420 

The progradational nature of this sequence suggests that the stratigraphically higher sediments would 421 

be representative of the foreshore and beach.  This interpretation is supported by the presence of horizontal 422 

laminations, developed by wave swash and low-angle tabular cross-bedding.  The conglomerate lenses could 423 

represent the plunge step marking the transition from the top of the shoreface to the base of the foreshore 424 

(i.e., Sanders, 2000) but the association of the conglomerate with the pink mudstone suggests that these are 425 

more likely to represent small channel fills with an associated palaeosol (as indicated by the mottled colour) 426 

indicating a period of subaerial emergence with fluvial erosion and sedimentation.  The lack of sedimentary 427 

structures resulting from the intense bioturbation in the overlying lithic calcarenite makes the environment of 428 

deposition difficult to infer; however, given the overall shallowing upwards sequence these may represent 429 

deltaic or fluvial facies.  Therefore, the section as a whole would represent a prograding shoreline. 430 

 431 

5.6 Location 6 (Fig. 3)  432 

 433 

Location 6 is a mixed clastic and carbonate sequence at the base of the Samandağ Formation, the top 434 

of this section has been dated using strontium isotopic ratios from benthic foraminifera to 5.35 ± 0.1 Ma (Sr 435 

measurement = 0.709023; Age range = 5.2 – 5.41 Ma; Boulton et al., 2007), placing this section within error 436 

of the Miocene-Pliocene boundary.  However, caution must be applied with strontium ages from the 437 

Messinian as a wide range of values occur due to a lack of connection with the global ocean, but by the early 438 
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Zanclean the return to fully marine conditions results in more robust dates (Flecker and Ellam, 2006).  Here, 439 

marine conditions are indicated by the presence of a mixed benthic foraminiferal assemblage used to derive 440 

the strontium measurement but the marginal setting could still influence the Sr values and thus the derived 441 

age.  442 

The basal part of the section is composed of interbedded calcarenite, chalk and marl (Fig. 9b) 443 

forming a conformable transistional boundary with the underlying Nurzeytin Formation (Facies M,C, Ss; 444 

Table 1).  The sandstone is medium-grained and unlithified.  Bedding thickness is 0.3-3.0 m.  Sedimentary 445 

structures are rare, but parallel laminations and rip-up clasts are present, especially near the base of sandsone 446 

beds.  The chalk horizons are very thin (5-15 cm).  The marl is burrowed and forms the lowermost bed of the 447 

section. 448 

The upper part of the section consists of interbedded marl, sandstone and conglomerate.  The 449 

conglomerates are irregular with erosive bases and are laterally discontinous.  The conglomerates are clast 450 

supported and clasts are sub-angular to sub-rounded.  Above the conglomerates there are fine-grained 451 

micaceous lithic greywacke beds with parallel laminations.  The bases of these beds are sharp and 452 

occasionally erosional; the beds often fine upwards and are generally laterally discontinuous on an outcrop 453 

scale.  These are capped by marl beds, containing planktic foraminifera (Boulton et al., 2007), completing a 454 

upwards fining unit. 455 

 456 

5.6.1 Interpretation 457 

These sandstone beds are interpreted as redeposited material.  In the lower part of the section, these may be 458 

grain-flow and turbidite deposits (Stow et al., 1996), whereas in the upper part of the section the sands may 459 

represent channel-fill deposits with basal conglomerate lags.  This suggests an increase in energy upwards 460 

possibly due to shallowing of the water column.  This is in agreement with a decrease in marl up the section 461 

that would represent background basin sedimentation (Stow et al., 1996).  The Sr isotope value (Boulton et 462 

al., 2007) derived from marls near the top of the exposure indicate marine deposition in the basin after the 463 

end of the MSC.  The mean age places the section just prior to the Messinian-Zanclean boundary, but the 464 

error in the measurement does not rule out deposition in the earliest Pliocene. 465 

 466 
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5.7 Messinian Gypsums 467 

In addition, to the selenite and gypsum breccia observed capping the top of the Mizrakli sequence 468 

(section 5.3), gypsum outcrops at a number of other localities in the Hatay Graben (Fig. 3) mainly along 469 

strike between the villages of Mizrakli and Vakıflı, and can reach 30 – 40 m in thickness.  Typically the 470 

sequence consists of a lower alabastrine gypsum with laminations and thin interbedded marl horizons.  Often 471 

the alabastrine gypsum can be observed to be interbedded with in situ selenite.  These alabastrine gypsums 472 

are normally overlain by gypsum breccias and blocks of gypsum in a gypsiferous marl matrix (Fig. 10).  On 473 

the southern margin of the graben near Sebenoba (Fig. 3) only the gypsum beccias were observed, consisting 474 

of clast-supported blades of selenite with minor gypsiferous marl matrix.  Tekin et al. (2010) undertook 475 

detailed facies analyses of the evaporites of the Hatay Graben.  Their analysis is consistent with our 476 

observations and shows that the gypsum deposits in the Hatay Graben can be divided into two sequences; a 477 

lower interbedded unit and an upper chaotic unit. The lower sequence is formed of interbedded laminated 478 

gypsum, selenite and bedded clastic gypsum facies (Tekin et al. 2010).  The laminated gypsum facies is 479 

composed of eroded and resedimented gypsum crystals with slumps, normal and reverse grading present.  480 

Tekin et al. (2010) interpret these laminate deposits as having been deposited by turbidity or gravity flows in 481 

the central part of a density stratified basin (Warren et al., 2006).   The bedded gypsum facies are composed 482 

of poorly sorted, massive gypsarenites and gypsrudies with broken selenite crystals up to 4 cm in length, and 483 

are also interpreted as having been deposited by mass flows (Tekin et al., 2010).  By contrast, the selenite 484 

facies is interpreted to have grown in situ water depths of > 10 m (Tekin et al., 2010).  The upper chaotic 485 

unit, as observed at Mizrakli (Fig. 10), is composed of large blocks of selenitic gypsum in a gypsiferous marl 486 

matrix with evidence of slumping indicative of down slope transport, which Tekin et al. (2010) attribute to 487 

intense tectonism during deposition.   488 

 489 

 490 

6. Discussion 491 

6.1 Timing of deposition of the Vakıflı Formation 492 

 493 

A key issue when interpreting the sedimentary succession regards timing of gypsum deposition.  Do these 494 

sediments represent facies of the Primary Lower Gypsum (PLG), the Resedimented Lower Gypsum (RLG) 495 
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or the Upper Gypsum (UG)?  Lugli et al. (2010; p. 84) state that the PLG and RLG deposits of Sicily ‘are 496 

never associated laterally or vertically’, and therefore the gypsums must represent one or other situation and 497 

not both in this model, if it is correct.  498 

 Tekin et al. (2010) report two 
87

Sr/
86

Sr values for the Hatay Graben gypsums: 0.708954 ± 4x10
-6

 and 499 

0.708946 ± 4x10
-6

; although the vertical position within the sections was not stated,
 
it appears that both 500 

samples were from the lower interbedded gypsum deposits based upon facies descriptions.  These values are 501 

entirely consistent with values for the PLG and RLG derived from elsewhere in the Mediterranean that span 502 

the range 0.708893 – 0.709024 (Lugli et al., 2010; Roveri et al., 2014b).  These data are distinct from values 503 

derived from the later UG deposits (typically 
87

Sr/
86

Sr = 0.708750- 0.708800; Roveri et al., 2014b).  These 504 

data strongly suggest that the lower interbedded unit in the Hatay basin correlates to the PLG or RLG and 505 

therefore the overlying gypsum mega-blocks will also belong to the same unit.  The sedimentary 506 

characteristics of UG deposits are also distinct from those of the Vakıflı Fm, and therefore can be ruled out. 507 

Tekin et al. (2010) describe two main gypsiferous facies associations in the Hatay Graben. The lower 508 

facies association is interpreted as part of a ‘sulphate platform’; the upper facies association as an ‘evaporitic 509 

slope-platform’.  However, the sedimentology of both of these facies associations indicates downslope 510 

transport of material, initially by grain flows and turbidity currents in the lower bedded units and then by 511 

debris flows in the upper unit forming the ‘mega-blocks’.  This evidence points towards the reworking of the 512 

gypsum characteristic of the RLG facies.  These facies are strikingly similar to those described on Cyprus as 513 

the lower and intermediate gypsum unit, recently reinterpreted by Manzi et al. (2015) as belonging to the 514 

RLG deposits.   515 

Typically, this observation would place the Hatay Graben into the ‘marginal’ basin class of deeper 516 

water basins where RLG facies have been observed (i.e., Sicily: Roveri et al., 2008a; Manzi et al., 2011). 517 

However, these observations are at odds with the presence of an unconformity (i.e., location 1) and the 518 

microfossil data indicating water depths of < 200 m prior to and in the early Messinian.  These features are 519 

characteristic of shallow water ‘peripheral’ basins where PLG typically would have accumulated. 520 

This contradiction may be resolved by considering the tectonic controls on basin formation. Boulton 521 

et al. (2006) demonstrated that high-angle oblique normal faulting initiated during the latest Miocene to 522 

Pliocene.  As a result, footwall uplift and hangingwall subsidence would have (relatively) rapidly produced 523 
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areas of varying water depth and new depocentres during the Messinian.  Therefore, it is possible that in a 524 

relatively short time the basin could have deepened sufficiently, combined with seismicity, to rework 525 

shallow gypsum facies into basin depocentre to form RLG facies.  While on the flanks of the graben PLG 526 

facies would have accumulated.  In the Hatay basin, shallow water gypsiferous sediments are not preserved 527 

but they are farther to the north (Tekin et al., 2010).  Therefore, on balance, the Vakıflı evaporites can be 528 

considered as RLG deposits but further research into field relationships and strontium isotopes is required to 529 

confirm this hypothesis. 530 

 531 

6.2  Comparison to other eastern Mediterranean marginal basins 532 

Although the Hatay Graben is located in the easternmost Mediterranean, a number of other basins 533 

nearby expose Messinian-aged strata that can increase the understanding of the regional palaeoenvironments 534 

of the MSC in the easternmost Mediterranean and aid in the interpretation of the Hatay Graben facies. 535 

Almost due south of the Hatay Graben lies the Nahr El-Kabir half graben in present-day Syria where 536 

outcrops of Messinian evaporites up to 100 m thick have been documented (Hardenberg and Robertson, 537 

2007).  Underlying Tortonian sediments are generally absent or very thin, suggesting limited accommodation 538 

space in this region prior to the onset of the MSC; this is somewhat different to the shallowing but significant 539 

water depth in the Hatay.  Hardenberg and Robertson (2007) describe the Messinian gypsums as having a 540 

tripartite subdivision with a lower unit comprising mainly alabastrine-type gypsum with marl laminations, a 541 

middle selenitic division, and an upper matrix-supported conglomerate.  These deposits are interpreted as 542 

deposition in local depocentres with the uppermost unit the result of tectonic instability (Hardenberg and 543 

Robertson, 2007).  Indeed, to generate the required accommodation space to accumulate these thick 544 

evaporite deposits, tectonic subsidence needs to be invoked given regional base-level fall.  Although, 545 

strontium data are lacking for this area, the stratigraphy is similar to that described for the Hatay Graben, 546 

indicating that the gypsums in the Nahir El-Kabi half-graben could belong to the RLG.   547 

Similar successions have been described for the Messinian evaporites in a number of sub-basins on 548 

Cyprus – the Polemi and Pissori sub-basins in the west and the Maroni sub-basin in the south (e.g., Eaton, 549 

1987; Follows, 1992; Payne and Robertson, 1995; Robertson et al., 1995; Rouchy et al., 2001; Krijgsman et 550 

al., 2002; Manzi et al., 2015).  In the western Polemi and Pissouri Basins, Tortonian marl successions reflect 551 
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the progressive shallowing from ~ 500 m at Tortonian/Messinian boundary to < 100 m water depth and 552 

marine isolation leading up to the onset of evaporite deposition during the MSC (Kouwenhoven et al., 2006).  553 

The gypsum deposits are divided into a lower and upper unit by an intervening breccia horizon (Robertson et 554 

al., 1995).  The lower unit is predominantly composed of finely-laminated gypsum with evidence for 555 

turbidity currents, slumping and debris flows, indicative of sediment reworking down a slope into deeper 556 

water.  The mega-rudite breccia is formed of metre-scale blocks of fine-grained gypsum in a gypsiferous 557 

mark matrix, which Robertson et al. (1995) interpret as large-scale tectonically induced slumping but 558 

Rouchy et al. (2001) interpret as the result of karstic dissolution.  The overlying upper unit is composed of 559 

selenitic gypsum and marl, interpreted as having formed in relatively shallow water.  The deposition of these 560 

Upper Gypsums is followed by typical Lago Mare facies sediments, which include palaeosols indicating 561 

subaerial exposure during this period (Rouchy et al., 2001).  The overlying Zanclean transgressive sediments 562 

were deposited in a well-oxygenated deep marine setting (Robertson et al., 1995).  Therefore, the Polemi and 563 

Pissouri Basins have been traditionally considered to have PLG and Upper Gypsum deposits, based upon the 564 

stratigraphic facies constraints.  Krijgsman et al. (2002) dated the onset of evaporite formation in the Pissouri 565 

Basin at 5.96 Ma using magnetostratigraphy, apparently confirming the synchronous onset of evaporite 566 

formation across the Mediterranean.  However, recent work by Manzi et al. (2015) concludes that the lower 567 

and intermediate units are both the RLG, due to the overall clastic and reworked nature of the facies and that 568 

the base of the evaporites dated by Krijgsman et al. (2002) is in fact the MES.  In the Maroni sub-basin, the 569 

evaporites consist of two distinct units (Robertson et al., 1995) but there is no evidence for late Messinian 570 

sediments and the mega-rudite is directly overlain by Pliocene marine marls (Robertson et al., 1995).  571 

Therefore, the overall stratigraphy from these basins is very similar to the Hatay Graben, although the Hatay 572 

Graben lacks the Upper Gypsum deposits possibly as a result of its more landward position.  573 

Interestingly, directly to the north of the Hatay Graben in the Iskenderun Basin, onshore exposures 574 

of gypsum described by Tekin et al. (2010) lack this ‘mega-rudite’ conglomeratic unit.  Instead, the gypsum 575 

facies that overly upper Tortonian marls are dominated by laminated gypsums, gypsiferous marls and 576 

sandstones, which Tekin et al. (2010) interpret as typical of very shallow water accumulation in lagoons and 577 

sabkhas.  There are minor selenite accumulations thought to represent slighter deeper water conditions, but 578 

overall the Iskenderun basin appears to have had shallower water depths during the MSC than the Hatay 579 
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Graben.  This area could represent the source area for the RLG of the Vakifli Fm., as younger tectonics have 580 

dissected the region since deposition (Boulton et al., 2006).  Overlying Pliocene deposits are not well 581 

described but a thin Lago Mare succession appears to transition upwards into fluvial and coastal 582 

environments (Tekin et al., 2010). 583 

Similarly, the Messinian succession in the Adana Basin indicates shallow water or continental 584 

conditions.  Darbaş and Nazik (2010) and Faranda et al. (2013) describe planktic foraminifera and ostracods 585 

from late Miocene sections in the Adana Basin demonstrating that in the early Messinian the area was 586 

characterised by shallow coastal environments such as marshes, lagoons and estuaries.  Cosentino et al. 587 

(2010) recognised a succession of rhythmically bedded anhydrites and black shales that they correlate to the 588 

PLG, whereas the outcropping gypsum deposits consist of gypsarenite and gypsrudite containing large 589 

blocks of selenite pertaining to the RLG (Radeff et al., 2015).   Interestingly, Consentino et al. (2010) also 590 

recognise two Messinian erosion surfaces in the Adana Basin; one correlating to the wider MES cutting the 591 

lower evaporites, and the other at the base of the overlying continental sequence.     592 

Burton-Ferguson et al. (2005) thought that these continental sediments were Pliocene in age; 593 

however, Ilgar et al. (2012) have identified Gilbert-type deltas that are laterally equivalent to the gypsum 594 

deposits, and microfossil analysis by Cipollari et al. (2013) and Faranda et al. (2013) showed that these 595 

sediments were deposited in brackish water environments of the latest Messinian Lago Mare event.    596 

Cipollari et al. (2013) also showed that subsequent Zanclean reflooding resulted in the deposition of deep 597 

marine marls in water depths of 200 – 500 m.  598 

  599 

6.3 Late Tortonian to Zanclean Palaeoenvironments of the Hatay Graben  600 

 601 

It is now possible to synthesise field observations, palaeontological and strontium data with regional trends 602 

to develop a model for the late Miocene of the Hatay Graben, which can then be used to test models for the 603 

wider Mediterranean at this time. 604 

6.3.1 Late Tortonian to early Messinian 605 

The late Tortonian and earliest Messinian in the Hatay Graben are represented by the Nurzeytin 606 

Formation, composed mainly of marl with interbeds of sandstones, from locations 3 and 4 (Figs. 3, 11). 607 
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These sediments are interpreted as basinal deposition from suspension settling with reworking of material 608 

downslope through the action of slumps, turbidity currents and rare debris flows (Boulton and Robertson, 609 

2007).  Boulton et al. (2006) suggested maximum water depths of up to 700 m for this unit; however, our 610 

new foraminiferal analysis indicates that by the early Messinian water depths had shallowed to < 200 m in 611 

some places and the seabed may have been carpeted in seagrass.  This shallowing is potentially due to 612 

regional tectonic uplift, sea level fall or to the initiation of local faulting (Boulton et al., 2006), but similar 613 

trends have also been recorded in Cypriot basins (Kouwenhoven et al., 2006) resulting from the increasing 614 

isolation of the basin.  The pre-MSC section on the main road (section 4) is of limited extent so that any 615 

changes to planktic foraminifera assemblages prior to the onset of the MSC might not have been identified in 616 

this study.  Furthermore, it is possible that these pre-MSC sediments have been truncated by an unconformity 617 

and younger sediments have been eroded, as indicated by the angular unconformity observed at section 4.  618 

The section investigated at Mizrakli (section 3) appears continuous through the Tortonian – Messinian 619 

boundary, suggesting that this area may have been protected from later erosion potentially due to a location 620 

more proximal to the basin depocentre (Fig. 11). 621 

6.3.2 Stage 1 of the MSC 622 

No gypsum from this period appears to have been preserved in situ in the Hatay Graben. Shallow 623 

water and sub-aerial gypsum facies have been described north of the Hatay Graben near Iskendurun (Tekin 624 

et al., 2010) that are typical of the PLG deposits.  PLG and associated deposits have also been described 625 

from the Adana Basin, suggesting that PLG could have been deposited if there were suitable conditions at 626 

that time.  Therefore, it is possible that shallow water deposits were present on the edges of the basin feeding 627 

the resedimented gypsum that is observed in the Hatay Graben at the present day, but these deposits have 628 

subsequently been eroded.  The Plio-Quaternary faulting that has formed the present topographic graben 629 

(Boulton and Robertson, 2007) has also dissected the region and previously the Hatay basin may have been 630 

part of a wider depositional system that at present.      631 

6.3.3 Stage 2 of the MSC 632 

During Stage 2 of the MSC, it is hypothesised that widespread subaerial erosion took place forming 633 

the MES and rivers cut canyons as the fluvial systems adjusted to base level (CIESM, 2008).  In the Hatay 634 
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Graben subaerial exposure led to the erosion of underlying strata (as observed at location 1) in marginal 635 

locations at the edge of the basin.  Despite this, subsequent deposition of Pliocene sediments and tectonic 636 

tilting of the basin makes an evaluation of the lateral extent of the MES difficult due to a lack of exposure 637 

(Fig. 11).    638 

In the basin depocentre, formed as a result of active faulting along the southern basin margin, gravity 639 

reworking of previously crystallised gypsum led to the formation of the resedimented lower gypsums (RLG).  640 

In the Hatay, these deposits consist of two distinct facies associations indicating that a change in the nature 641 

of the gravity reworking took place later in this period, resulting in the deposition of the ‘mega-clasts’ at the 642 

end of the RLG period (as indicated by Sr ratios; Tekin et al., 2010).  Similar facies are recorded in many 643 

locations around the Mediterranean (Sicily, Cyprus, Turkey), which have commonly been attributed to 644 

tectonic forcing (i.e., Robertson et al., 1995; Tekin et al., 2010).  However, the RLG facies in the Adana 645 

Basin have been dated to the early post-evaporitic stage of the MSC (5.55 – 5.45 Ma) owing to the presence 646 

of brackish Paratethyan ostracods (Faranda et al., 2013) in the fine-grained interbedded sediments suggesting 647 

that downslope transport of clastic gypsum material may have taken place at different times in different 648 

basins. 649 

 650 

6.3.4 Stage 3 of the MSC 651 

 Although Stage 3 gypsums have been recognised from other eastern Mediterranean basins, the 652 

available data suggest that these are lacking in the Hatay Graben owing to either, or probably a combination 653 

of: a) later erosion; b) subaerial exposure resulting in a hiatus, or c) water chemistry or other local conditions 654 

being unconducive to gypsum formation at this time.   655 

 Furthermore, several of the sections studied here have stratigraphic constraints indicating that during 656 

the latest Miocene (sections 2, 5, 6) marine conditions may have been present within the Hatay Graben, prior 657 

to the Zanclean reflooding.  This is in clear contrast to nearby basins on Cyprus and elsewhere in Turkey 658 

where UG and/or Lago Mare biofacies deposits have been identified (i.e., Rouchy et al., 2001; Faranda et al., 659 

2013; Manzi et al., 2015; Radeff et al., 2015).  Yet Popescu et al. (2009, 2015) and Carnevale et al. (2006) 660 

have recorded fossil evidence indicating marine conditions during this period from deep and peripheral 661 

basins in the western Mediterranean, supporting the idea that marine conditions returned to the 662 
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Mediterranean prior to the Pliocene (e.g., Butler et al., 1995; Riding et al., 1998; Bache et al., 2012).  663 

Although further stratigraphic and palaeoenvironmental constraints would be desirable, our available data 664 

tentatively support a pre-Pliocene return to marine conditions even in the easternmost Mediterranean. 665 

 666 

6.3.5 Zanclean  667 

 The base of the Zanclean is normally recognised as the return to marine conditions across the 668 

Mediterranean, although as stated above this may not be strictly correct.  Available stratigraphic constraints 669 

indicate that the earliest Zanclean deposits are composed of interbedded marls and sandstones characteristic 670 

of marine conditions and probably represent the deepest water facies in the basin depocentre.  Elsewhere, a 671 

slightly irregular to planar surface truncates the earlier Miocene marls, forming the base of the sandstone-672 

dominated Samandağ Formation.  Coarse-grained sandstones exhibiting a range of facies typical of Gilbert-673 

type deltas or coastal environments generally outcrop stratigraphically above presumably deposited later in 674 

the Zanclean (Fig. 11).  This dramatic change in facies suggests that although subaerial conditions returned 675 

initially in the late Miocene/Pliocene, water depth had shallowed considerably in most of the basin compared 676 

to before the MSC.  The presence of Gilbert-type fan deltas is indicative of narrow and steep-gradient 677 

shelves, possibly infilling the incision developed during stage 2 of the MSC.  678 

 679 

 680 

7. Conclusions 681 

The available data indicate that the pre-MSC succession of the Hatay Graben is very similar to sequences on 682 

Cyprus, and to some extent in Syria, where water depths were likely ≥ 100 m at the onset of the MSC.  PLG 683 

facies are generally poorly exposed in the eastern Mediterranea and the Hatay Graben is no exception and the 684 

gypsum deposits in the Hatay Graben are interpreted as RLG deposits.  These lower RLG are often observed 685 

to be overlain by a chaotic unit composed of large gypsum ‘mega-clasts’ observed throughout the eastern 686 

Mediterranean and overlying the MES.  Robertson et al. (1995), Boulton et al. (2006), and Hardenberg and 687 

Robertson (2007) have all previously interpreted these deposits as debris flows potentially triggered by 688 

tectonic activity.  Although similar central Mediterranean deposits have been classically thought of as having 689 

been caused by dissolution collapse, Manzi et al. (2011) has also recently reinterpreted the central 690 
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Mediterranean breccias as syn-tectonic deposits. This apparent synchronicity raises the question as to how 691 

these basins all experienced sediment instability at the same time. If this is the case then the Mediterranean 692 

apparently underwent widespread and intense tectonic activity ~ 5.5 Ma.  Interestingly, this correlates with 693 

proposals that the Arabia-Eurasia collision underwent a period of reorganisation ~ 5 Ma (Allen et al., 2004).   694 

However, the Adana Basin also contains evidence for a younger Messinian unconformity, and the RLG 695 

deposits in this basin are younger (dating to the Lago Mare biofacies event) than those described elsewhere 696 

(Radeff et al., 2015), suggesting that the mega-breccias might span a longer timespan than hitherto 697 

recognised.  These stratigraphic differences observed north of the Hatay may reflect the proximity of the 698 

Adana and Iskenderun basins to the collisional zone between the Arabian and Anatolian micro-plates (the 699 

Bitlis-Zagros Suture).  Although continental collision was well advanced by the Messinian (e.g., Robertson 700 

et al., 2015), the Adana and Iskenderun basins north of the suture zone, would have experienced different 701 

uplift and subsidence trajectories than areas to the south (i.e., Hatay and Syria) and the west of the collisional 702 

front. 703 

 Following deposition of the RLG, the Hatay Graben apparently records evidence for marine 704 

conditions at this time in contrast to the other regional basins where Lago Mare facies have been recorded.  705 

Although we cannot rule out the presence of typical Lago Mare facies elsewhere in the basin, the apparent 706 

presence of marine fauna supports the work of Popescu et al. (2009, 2015) and Carnevale et al. (2006) and 707 

others who have proposed a return to marine conditions prior to the Zanclean, though this interpretation 708 

needs further corroboration.  Finally, regional and local tectonic uplift (e.g., Boulton and Robertson, 2008; 709 

Boulton and Whittaker, 2009) meant that the Hatay Graben rapidly shallowed during the Pliocene resulting 710 

in continental or coastal sediments and the deposition of Gilbert-type deltas and associated coastal and 711 

fluvial systems.  712 

Therefore, this examination of the Miocene to Pliocene transition outcropping in the Hatay Graben 713 

shows that the proposed stratigraphic framework for the whole Mediterranean region is broadly consistent in 714 

this easternmost basin.  However, questions still remain regarding the timing of the return to marine 715 

conditions and the possibility that the refilling of the Mediterranean had commenced by the Zanclean, as well 716 

as to the significance of the ‘mega-breccias’ seen in many regions and their possible connection to the Lago 717 

Mare event. 718 
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Figures  1135 

Table 1. Sedimentological and facies data for the Nurzeytin and Samandağ formations. 1136 

 1137 

Figure 1. (A) Summary stratigraphic model for the three stages of deposition characteristic of the MSC Crisis 1138 

in the Mediterranean; PLG - Primary Lower Gypsum, RLG – Resedimented lower Gypsum (modified from 1139 



   

42 

 

CIESM, 2008; Roveri et al., 2014). Note: the numbers (1, 2, 3.1, 3.2) refer to stages of the MSC. (B) 1140 

Schematic classification of Messinian sub-basins in the Mediterranean (modified from Roveri et al., 2014) 1141 

showing shallow, intermediate (these basin are also known as peripheral/marginal) and deep water basins. 1142 

 1143 

Figure 2. Plate tectonic overview of the Eastern Mediterranean showing the location of key Messinian to 1144 

Zanclean deposits in the Eastern Mediterranean; EAFZ – East Anatolian Fault Zone; DSZF – Dead Sea Fault 1145 

Zone; M-AL – Misis-Andirin lineament; FBFZ – Fethiye-Burdur Fault Zone: 1) Dardanelles (Melinte-1146 

Dobrinescu et al., 2009); 2) Asparta (Flecker et al., 1998); 3 and 4) Polemi, Pissouri, Maroni and Mesaoria 1147 

Basins of Cyprus (e.g., Robertson et al., 1995); 5) IODP leg 161 (Iaccarino et al., 1999a, b); 6) Adana Basin, 1148 

(Darbas and Nazik, 2010; Ilgar et al., 2012); 7) Iskenderun Basin (Tekin et al., 2010);  8) Hatay Graben (this 1149 

paper; Boulton et al., 2006, 2007; Tekin et al., 2010); 9) Latakia Graben (Hardenberg and Robertson, 2009, 1150 

2012). 1151 

 1152 

Figure 3. Geological map of the study area showing the location of places and sections described in the text, 1153 

modified from Boulton et al. (2006) and Tekin et al. (2010).  Mağaracik Section;  Ortatepe;  Mizrakli 1154 

– Nurzeytin Fm., type section;  Quarry;  Sutası Log,  Road cutting. 1155 

 1156 

Figure 4. Stratigraphic column for the Cenozoic strata of the Hatay Graben (modified from Boulton et al., 1157 

2007). 1158 

 1159 

Figure 5. Photograph and sketch of Samandağı Formation sediments of presumed Pliocene age exposed 1160 

north of Mağaracik (UTM Zone 35 S; 0765400/4000510) 1161 

 1162 

Figure 6. Photograph and field sketch of the downlap surface observed along the terrace at Ortatepe Tepe, 1163 

where the Pliocene (?) Samandağı Formation overlies the upper Miocene Nurzeytin Fm., (Grid Ref: 1164 

0769750/3998399). 1165 

 1166 
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Figure 7. Micropalaeontological results from Ortatepe (location 2; Fig. 3) plus log from the Nurzeytin 1167 

Formation below the downlap surface seen in figure 6. The key for the log is shown on figure 9. 1168 

 1169 

Figure 8. (A) Sedimentary log of Miocene-Pliocene boundary section observed on the Antakya-Samandağ 1170 

road (location 4; Fig. 3) showing location of samples taken for microfossil analysis – key is shown on figure 1171 

9. (B) Photograph of the section, with location of the logged section indicated with the arrow, Note: the 1172 

slight angular discordance between the lower Nurzeytin Formation and the overlying Samandağı Formation 1173 

 1174 

Figure 9. Two sedimentary logs of the Samandağı Formation (A) Log of the Sutası Section (modified from 1175 

Boulton et al., 2007). (B) Log of location 6 (Fig. 3), showing the stratigraphic position of the Sr 1176 

measurement reported by Boulton et al. (2007).  Key shown is for all logs. 1177 

 1178 

Figure 10. Photographs illustrating gypsum facies of the Hatay Graben. A) Coarse-grained in situ selenite 1179 

crystals up to 4 cm long and B) laminated and interbedded in situ selenite and alabastrine from near Mizrakli, 1180 

C) Fine-grained reworked selenite crystals from Sebenoba. Note the lens cap (5 cm diameter) for scale on 1181 

each photograph. D) large alabastrine blocks in a gypsiferous marl matrix forming the ‘mega-breccia’ as 1182 

observed near Vaklıflı. 1183 

 1184 

Figure 11. Sketch stratigraphic correlation (horizontal spacing is not to scale) approximately west to east 1185 

between the key sections (indicated by numbers) discussed in the text and locations shown on figure 3. Note 1186 

the similarity of the facies described here to the idealised model of the Messinian deposits for a peripheral 1187 

basin shown in figure 1a. MES – Messinian Erosion Surface, RLG – Resedimented Lower Gypsum.   1188 
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