337 research outputs found
Virtual Compton Scattering off the Pseudoscalar Meson Octet
We present a calculation of the virtual Compton scattering amplitude for the
pseudoscalar meson octet in the framework of chiral perturbation theory at
. We calculate the electromagnetic generalized polarizabilities
and compare the results in the real Compton scattering limit to available
experimental values. Finally, we give predictions for the differential cross
section of electron-meson bremsstrahlung.Comment: 9 pages, Latex, uses cjp3.sty (included), 4 eps figures, to be
published in the proceedings of the 13th Indian-Summer School "Understanding
the Structure of Hadrons," August 28 - September 1, 2000, Prague, Czech
Republi
Ultrafast control of magnetic interactions via light-driven phonons
Resonant ultrafast excitation of infrared-active phonons is a powerful technique with which to control the electronic properties of materials that leads to remarkable phenomena such as the light-induced enhancement of superconductivity1,2, switching of ferroelectric polarization3,4 and ultrafast insulator-to-metal transitions5. Here, we show that light-driven phonons can be utilized to coherently manipulate macroscopic magnetic states. Intense mid-infrared electric field pulses tuned to resonance with a phonon mode of the archetypical antiferromagnet DyFeO3 induce ultrafast and long-living changes of the fundamental exchange interaction between rare-earth orbitals and transition metal spins. Non-thermal lattice control of the magnetic exchange, which defines the stability of the macroscopic magnetic state, allows us to perform picosecond coherent switching between competing antiferromagnetic and weakly ferromagnetic spin orders. Our discovery emphasizes the potential of resonant phonon excitation for the manipulation of ferroic order on ultrafast timescales6
Rare Decays of \Lambda_b->\Lambda + \gamma and \Lambda_b ->\Lambda + l^{+} l^{-} in the Light-cone Sum Rules
Within the Standard Model, we investigate the weak decays of and with the light-cone
sum rules approach. The higher twist distribution amplitudes of
baryon to the leading conformal spin are included in the sum rules for
transition form factors. Our results indicate that the higher twist
distribution amplitudes almost have no influences on the transition form
factors retaining the heavy quark spin symmetry, while such corrections can
result in significant impacts on the form factors breaking the heavy quark spin
symmetry. Two phenomenological models (COZ and FZOZ) for the wave function of
baryon are also employed in the sum rules for a comparison, which can
give rise to the form factors approximately 5 times larger than that in terms
of conformal expansion. Utilizing the form factors calculated in LCSR, we then
perform a careful study on the decay rate, polarization asymmetry and
forward-backward asymmetry, with respect to the decays of , .Comment: 38 pages, 15 figures, some typos are corrected and more references
are adde
New Magnetic Anomaly Map of the Antarctic
The second generation Antarctic magnetic anomaly compilation for the region south of 60 degrees S includes some 3.5 million line-km of aeromagnetic and marine magnetic data that more than doubles the initial map's near-surface database. For the new compilation, the magnetic data sets were corrected for the International Geomagnetic Reference Field, diurnal effects, and high-frequency errors and leveled, gridded, and stitched together. The new magnetic data further constrain the crustal architecture and geological evolution of the Antarctic Peninsula and the West Antarctic Rift System in West Antarctica, as well as Dronning Maud Land, the Gamburtsev Subglacial Mountains, the Prince Charles Mountains, Princess Elizabeth Land, and Wilkes Land in East Antarctica and the circumjacent oceanic margins. Overall, the magnetic anomaly compilation helps unify disparate regional geologic and geophysical studies by providing new constraints on major tectonic and magmatic processes that affected the Antarctic from Precambrian to Cenozoic times.Korea Polar Research Institute (KOPRI) programs, PM15040 and PE17050Germany's AWI/Helmholtz Center for Polar and Marine ResearchFederal Institute for Geosciences and Natural ResourcesBritish Antarctic Survey/Natural Environmental Research CouncilItalian Antarctic Research ProgrammeRussian Ministry of Natural ResourcesU.S. National Science Foundation and National Space and Aeronautics AdministrationAustralian Antarctic Division and Antarctic Climate & Ecosystem Cooperative Research CentreFrench Polar InstituteGlobal geomagnetic observatories network (INTERMAGNET
Deconfining Phase Transition as a Matrix Model of Renormalized Polyakov Loops
We discuss how to extract renormalized from bare Polyakov loops in SU(N)
lattice gauge theories at nonzero temperature in four spacetime dimensions.
Single loops in an irreducible representation are multiplicatively renormalized
without mixing, through a renormalization constant which depends upon both
representation and temperature. The values of renormalized loops in the four
lowest representations of SU(3) were measured numerically on small, coarse
lattices. We find that in magnitude, condensates for the sextet and octet loops
are approximately the square of the triplet loop. This agrees with a large
expansion, where factorization implies that the expectation values of loops in
adjoint and higher representations are just powers of fundamental and
anti-fundamental loops. For three colors, numerically the corrections to the
large relations are greatest for the sextet loop, ; these
represent corrections of for N=3. The values of the renormalized
triplet loop can be described by an SU(3) matrix model, with an effective
action dominated by the triplet loop. In several ways, the deconfining phase
transition for N=3 appears to be like that in the matrix model of
Gross and Witten.Comment: 24 pages, 7 figures; v2, 27 pages, 12 figures, extended discussion
for clarity, results unchange
Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling
This review paper outlines background information and covers recent advances
made via the analysis of spectra and images of prominence plasma and the
increased sophistication of non-LTE (ie when there is a departure from Local
Thermodynamic Equilibrium) radiative transfer models. We first describe the
spectral inversion techniques that have been used to infer the plasma
parameters important for the general properties of the prominence plasma in
both its cool core and the hotter prominence-corona transition region. We also
review studies devoted to the observation of bulk motions of the prominence
plasma and to the determination of prominence mass. However, a simple inversion
of spectroscopic data usually fails when the lines become optically thick at
certain wavelengths. Therefore, complex non-LTE models become necessary. We
thus present the basics of non-LTE radiative transfer theory and the associated
multi-level radiative transfer problems. The main results of one- and
two-dimensional models of the prominences and their fine-structures are
presented. We then discuss the energy balance in various prominence models.
Finally, we outline the outstanding observational and theoretical questions,
and the directions for future progress in our understanding of solar
prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a
better resolution in the published version. New version reflects minor
changes brought after proof editin
Double volume reflection of a proton beam by a sequence of two bent crystals
The doubling of the angle of beam deflection due to volume reflection of protons by a sequence of two bent silicon crystals was experimentally observed at the 400 GeV proton beam of the CERN SPS. A similar sequence of short bent crystals can be used as an efficient primary collimator for the Large Hadron Collider
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
- âŚ