20 research outputs found
Male responsibility and maternal morbidity: a cross-sectional study in two Nigerian states
<p>Abstract</p> <p>Background</p> <p>Nigeria continues to have high rates of maternal morbidity and mortality. This is partly associated with lack of adequate obstetric care, partly with high risks in pregnancy, including heavy work. We examined actionable risk factors and underlying determinants at community level in Bauchi and Cross River States of Nigeria, including several related to male responsibility in pregnancy.</p> <p>Method</p> <p>In 2009, field teams visited a stratified (urban/rural) last stage random sample of 180 enumeration areas drawn from the most recent censuses in each of Bauchi and Cross River states. A structured questionnaire administered in face-to-face interviews with women aged 15-49 years documented education, income, recent birth history, knowledge and attitudes related to safe birth, and deliveries in the last three years. Closed questions covered female genital mutilation, intimate partner violence (IPV) in the last year, IPV during the last pregnancy, work during the last pregnancy, and support during pregnancy. The outcome was complications in pregnancy and delivery (eclampsia, sepsis, bleeding) among survivors of childbirth in the last three years. We adjusted bivariate and multivariate analysis for clustering.</p> <p>Findings</p> <p>The most consistent and prominent of 28 candidate risk factors and underlying determinants for non-fatal maternal morbidity was intimate partner violence (IPV) during pregnancy (ORa 2.15, 95%CIca 1.43-3.24 in Bauchi and ORa 1.5, 95%CI 1.20-2.03 in Cross River). Other spouse-related factors in the multivariate model included not discussing pregnancy with the spouse and, independently, IPV in the last year. Shortage of food in the last week was a factor in both Bauchi (ORa 1.66, 95%CIca 1.22-2.26) and Cross River (ORa 1.32, 95%CIca 1.15-1.53). Female genital mutilation was a factor among less well to do Bauchi women (ORa 2.1, 95%CIca 1.39-3.17) and all Cross River women (ORa 1.23, 95%CIca 1.1-1.5).</p> <p>Interpretation</p> <p>Enhancing clinical protocols and skills can only benefit women in Nigeria and elsewhere. But the violence women experience throughout their lives – genital mutilation, domestic violence, and steep power gradients – is accentuated through pregnancy and childbirth, when women are most vulnerable. IPV especially in pregnancy, women's fear of husbands or partners and not discussing pregnancy are all within men's capacity to change.</p
The overlapping burden of the three leading causes of disability and death in sub-Saharan African children
Despite substantial declines since 2000, lower respiratory infections (LRIs), diarrhoeal diseases, and malaria remain among the leading causes of nonfatal and fatal disease burden for children under 5 years of age (under 5), primarily in sub-Saharan Africa (SSA). The spatial burden of each of these diseases has been estimated subnationally across SSA, yet no prior analyses have examined the pattern of their combined burden. Here we synthesise subnational estimates of the burden of LRIs, diarrhoea, and malaria in children under-5 from 2000 to 2017 for 43 sub-Saharan countries. Some units faced a relatively equal burden from each of the three diseases, while others had one or two dominant sources of unit-level burden, with no consistent pattern geographically across the entire subcontinent. Using a subnational counterfactual analysis, we show that nearly 300 million DALYs could have been averted since 2000 by raising all units to their national average. Our findings are directly relevant for decision-makers in determining which and targeting where the most appropriate interventions are for increasing child survival. © 2022, The Author(s).Funding text 1: This work was primarily supported by grant OPP1132415 from the Bill & Melinda Gates Foundation. ; Funding text 2: This study was funded by the Bill & Melinda Gates Foundation. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. The non-consortium authors have no competing interests . Competing interests for consortium authors is as follows: Robert Ancuceanu reports receiving consultancy or speaker feeds from UCB, Sandoz, Abbvie, Zentiva, Teva, Laropharm, CEGEDIM, Angelini, Biessen Pharma, Hofigal, AstraZeneca, and Stada. Jacek Jerzy Jozwiak reports personal fees from Amgen, ALAB Laboratories, Teva, Synexus, Boehringer Ingelheim, and Zentiva, all outside the submitted work. Kewal Krishan reports non-financial support from UGC Centre of Advanced Study, CAS II, Department of Anthropology, Panjab University, Chandigarh, India, outside the submitted work. Walter Mendoza is a Program Analyst in Population and Development at the United Nations Population Fund-UNFPA Country Office in Peru, which does not necessarily endorse or support these findings. Maarten J Postma reports grants and personal fees from MSD, GSK, Pfizer, Boehringer Ingelheim, Novavax, BMS, Seqirus, Astra Zeneca, Sanofi, IQVIA, grants from Bayer, BioMerieux, WHO, EU, FIND, Antilope, DIKTI, LPDP, Budi, personal fees from Novartis, Quintiles, Pharmerit, owning stock options in Health-Ecore and PAG Ltd, and being advisor to Asc Academics, all outside the submitted work. Jasviner A Singh reports personal fees from Crealta/Horizon, Medisys, Fidia, UBM LLC, Trio health, Medscape, WebMD, Clinical Care options, Clearview healthcare partners, Putnam associates, Focus forward, Navigant consulting, Spherix, Practice Point communications, the National Institutes of Health, the American College of Rheumatology, and Simply Speaking, owning stock options in Amarin, Viking, Moderna, Vaxart pharmaceuticals and Charlotte’s Web Holdings, being a member of FDA Arthritis Advisory Committee, the steering committee of OMERACT, an international organization that develops measures for clinical trials and receives arm’s length funding from 12 pharmaceutical companies, and the Veterans Affairs Rheumatology Field Advisory Committee, and acting as Editor and Director of the UAB Cochrane Musculoskeletal Group Satellite Center on Network Meta-analysis, all outside the submitted work. Era Upadhyay has a patent A system and method of reusable filters for anti-pollution mask pending, and a patent A system and method for electricity generation through crop stubble by using microbial fuel cells pending
Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17
Background Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40.0% (95% uncertainty interval [UI] 39.4-40.7) to 50.3% (50.0-50.5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46.3% (95% UI 46.1-46.5) in 2017, compared with 28.7% (28.5-29.0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88.6% (95% UI 87.2-89.7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664-711) of the 1830 (1797-1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76.1% (95% UI 71.6-80.7) of countries from 2000 to 2017, and in 53.9% (50.6-59.6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe
Five insights from the Global Burden of Disease Study 2019
The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe
Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017
Background:
The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data.
Methods:
We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting.
Findings:
Globally, for females, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and haemoglobinopathies and haemolytic anaemias in both 1990 and 2017. For males, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and tuberculosis including latent tuberculosis infection in both 1990 and 2017. In terms of YLDs, low back pain, headache disorders, and dietary iron deficiency were the leading Level 3 causes of YLD counts in 1990, whereas low back pain, headache disorders, and depressive disorders were the leading causes in 2017 for both sexes combined. All-cause age-standardised YLD rates decreased by 3·9% (95% uncertainty interval [UI] 3·1–4·6) from 1990 to 2017; however, the all-age YLD rate increased by 7·2% (6·0–8·4) while the total sum of global YLDs increased from 562 million (421–723) to 853 million (642–1100). The increases for males and females were similar, with increases in all-age YLD rates of 7·9% (6·6–9·2) for males and 6·5% (5·4–7·7) for females. We found significant differences between males and females in terms of age-standardised prevalence estimates for multiple causes. The causes with the greatest relative differences between sexes in 2017 included substance use disorders (3018 cases [95% UI 2782–3252] per 100 000 in males vs s1400 [1279–1524] per 100 000 in females), transport injuries (3322 [3082–3583] vs 2336 [2154–2535]), and self-harm and interpersonal violence (3265 [2943–3630] vs 5643 [5057–6302]).
Interpretation:
Global all-cause age-standardised YLD rates have improved only slightly over a period spanning nearly three decades. However, the magnitude of the non-fatal disease burden has expanded globally, with increasing numbers of people who have a wide spectrum of conditions. A subset of conditions has remained globally pervasive since 1990, whereas other conditions have displayed more dynamic trends, with different ages, sexes, and geographies across the globe experiencing varying burdens and trends of health loss. This study emphasises how global improvements in premature mortality for select conditions have led to older populations with complex and potentially expensive diseases, yet also highlights global achievements in certain domains of disease and injury
STOCHASTIC FRONTIER TECHNICAL EFFICIENCY ANALYSIS OF WATERMELON (Citrullus lenatus) PRODUCTION IN NIGERIA
The study analysed the efficiency of Watermelon (Citrullus lenatus) Production in Nigeria. A multi-stage sampling technique was used in selecting three hundred and sixty (360) respondents. Selection was done with purposive and simple random sampling, and data collected with a structured questionnaire. The objectives of the study were to identify the socio-economic characteristics of the respondents, determine the technical efficiency and measure the total resource productivity of watermelon production in the study area. The data were analyzed using descriptive statistics and quantitative analytical tool of stochastic frontier model (Cobb Douglas production function). Socio-economic attributes like age, farm size, educational status and farm experience were described to show their relationship with watermelon production in the study area. Results of the stochastic frontier model showed that all the estimated coefficients of the variables of the production function were positive except fungicide. They included: farm size (0.0795), labour (0.0201), number of seed grown (0.926) and fertilizer (0.0207). This implied that watermelon output increases with increase in these variables. It was also shown that labour (0.441), fertilizer (0.475) and fungicide (-1.662) did not exert any significant effect on watermelon output as shown by their t-ratio values. For the factors affecting technical inefficiency of watermelon farmers, age of farmers and farm size were negative and significant at 0.05 levels of probability, while household size, educational qualification and farming experience were all positive and significant at 5% levels of significance and type of cropping was positive and significant at 10% level of significance. Non-farm income was positive and significant at 5% level of probability. This means that one unit increase in these variables would increase technical inefficiency of the farmers and hence decreasing their technical efficiency. Finally, the return to scale parameter returned the value 0.967 which indicated that watermelon production in the study area was in the Stage II of the production surface. Based on the results of the analysis the following were recommended. Watermelon farmers should be provided and encouraged to take loans, be assisted with extension services and become members of farmer associations, in order to boost their production. Also inputs such as farm size, labour, seeds, fertilizer and fungicide should be increased for optimum production
STOCHASTIC FRONTIER TECHNICAL EFFICIENCY ANALYSIS OF WATERMELON (Citrullus lenatus) PRODUCTION IN NIGERIA
The study analysed the efficiency of Watermelon (Citrullus lenatus) Production in Nigeria. A multi-stage sampling technique was used in selecting three hundred and sixty (360) respondents. Selection was done with purposive and simple random sampling, and data collected with a structured questionnaire. The objectives of the study were to identify the socio-economic characteristics of the respondents, determine the technical efficiency and measure the total resource productivity of watermelon production in the study area. The data were analyzed using descriptive statistics and quantitative analytical tool of stochastic frontier model (Cobb Douglas production function). Socio-economic attributes like age, farm size, educational status and farm experience were described to show their relationship with watermelon production in the study area. Results of the stochastic frontier model showed that all the estimated coefficients of the variables of the production function were positive except fungicide. They included: farm size (0.0795), labour (0.0201), number of seed grown (0.926) and fertilizer (0.0207). This implied that watermelon output increases with increase in these variables. It was also shown that labour (0.441), fertilizer (0.475) and fungicide (-1.662) did not exert any significant effect on watermelon output as shown by their t-ratio values. For the factors affecting technical inefficiency of watermelon farmers, age of farmers and farm size were negative and significant at 0.05 levels of probability, while household size, educational qualification and farming experience were all positive and significant at 5% levels of significance and type of cropping was positive and significant at 10% level of significance. Non-farm income was positive and significant at 5% level of probability. This means that one unit increase in these variables would increase technical inefficiency of the farmers and hence decreasing their technical efficiency. Finally, the return to scale parameter returned the value 0.967 which indicated that watermelon production in the study area was in the Stage II of the production surface. Based on the results of the analysis the following were recommended. Watermelon farmers should be provided and encouraged to take loans, be assisted with extension services and become members of farmer associations, in order to boost their production. Also inputs such as farm size, labour, seeds, fertilizer and fungicide should be increased for optimum production