1,158 research outputs found

    Acoustic Emission Analysis of SCS-6 Fiber Fracture in Titanium Matrix Composites

    Full text link
    One aspect of successful composite design involves development of a detailed knowledge of damage evolution. In metal matrix composites, cracking and/or plastic deformation of one or more constituents together with fiber-matrix interfacial debonding and sliding generally occur prior to catastrophic failure [1, 2]. The nature and severity of these damage processes controls mechanical performance. In ductile matrix systems having a low fiber-matrix interfacial strength, the failure process can involve successive fragmentation of the fibers with increasing load. Broken fibers shed load (equally among the unbroken fibers in the case of global load sharing) until the fiber fracture density reaches some critical value and the sample catastrophically fails. Characterization of damage development has been slowed by a lack of NDE techniques. Here, the use of acoustic emission (AE) techniques is explored to further understand and quantify failure processes of this type.</p

    RF IC performance optimization by synthesizing optimum inductors

    Get PDF
    Even with optimal system design and careful choice of topology for a particular RF application, large amounts of energy are often wasted due to low-quality passives, especially inductors. Inductors have traditionally been difficult to integrate due to their inherent low quality factors and modelling complexity. Furthermore, although many different inductor configurations are available for an RF designer to explore, support for integrated inductors in electronic design automation tools and process design kits has been very limited in the past. In this chapter, a recent advance in technology-aware integrated inductor design is presented, where drawbacks of the integrated inductor design are addressed by introducing an equation-based inductor synthesis algorithm. The intelligent computation technique aims to allow RF designers to optimize integrated inductors, given the inductor center frequency dictated by the device application, and geometry constraints. This does not only lay down a foundation for system-level RF circuit performance optimization, but, because inductors are often the largest parts of an RF system, it also allows for optimal usage of chip real estate

    Solitary metastatic clear cell carcinoma to the spleen

    Get PDF
    A 57-year-old with a 9-year history of increased abdominal girth, presented with increased abdominal pain, anemia, and acute renal failure. His past medical history was only remarkable for a previous lung cancer 21 years ago that was treated with a right upper lung lobectomy. A computed tomography (CT) scan of the patient's abdomen showed a solitary 20×20×25cm cystic splenic mass. The patient underwent an urgent splenectomy. Intra-operatively a large splenic cystic cavity was found with a solid inferior splenic mass. An exhaustive histological analysis of the splenic mass confirmed a clear cell carcinoma with low malignant potential that likely represented a metastatic lesion from the patient's previous distant lung cancer. Postoperatively the patient recovered well and at 1-year followup the patient demonstrated no further evidence of metastatic disease. This case is extremely unique and provides a very rare example of a metastatic solitary clear cell carcinoma to the spleen, with a presumed latency period of more than 20 years

    Evaluation of skin dose associated with different frequencies of bolus applications in post-mastectomy three-dimensional conformal radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study aimed to calculate chest-wall skin dose associated with different frequencies of bolus applications in post-mastectomy three-dimensional conformal radiotherapy (3D-CRT) and to provide detailed information in the selection of an appropriate bolus regimen in this clinical setting.</p> <p>Methods</p> <p>CT-Simulation scans of 22 post-mastectomy patients were used. Chest wall for clinical target volume (CTV) and a volume including 2-mm surface thickness of the chest wall for skin structures were delineated. Precise PLAN 2.11 treatment planning system (TPS) was used for 3D-CRT planning. 50 Gy in 25 fractions were prescribed using tangential fields and 6-MV photons. Six different frequencies of bolus applications (0, 5, 10, 15, 20, and 25) were administered. Cumulative dose-volume histograms were generated for each bolus regimen. The minimum, maximum and mean skin doses associated with the bolus regimens were compared. To test the accuracy of TPS dose calculations, experimental measurements were performed using EBT gafchromic films.</p> <p>Results</p> <p>The mean, minimum and maximum skin doses were significantly increased with increasing days of bolus applications (p < 0.001). The minimum skin doses for 0, 5, 10, 15, 20, and 25 days of bolus applications were 73.0% ± 2.0%, 78.2% ± 2.0%, 83.3% ± 1.7%, 88.3% ± 1.6%, 92.2% ± 1.7%, and 93.8% ± 1.8%, respectively. The minimum skin dose increments between 20 and 25 (1.6% ± 1.0%), and 15 and 20 (4.0% ± 1.0%) days of bolus applications were significantly lower than the dose increments between 0 and 5 (5.2% ± 0.6%), 5 and 10 (5.1% ± 0.8%), and 10 and 15 (4.9% ± 0.8%) days of bolus applications (p < 0.001). The maximum skin doses for 0, 5, 10, 15, 20, and 25 days of bolus applications were 110.1% ± 1.1%, 110.3% ± 1.1%, 110.5% ± 1.2%, 110.8% ± 1.3%, 111.2% ± 1.5%, and 112.2% ± 1.7%, respectively. The maximum skin dose increments between 20 and 25 (1.0% ± 0.6%), and 15 and 20 (0.4% ± 0.3%) days of bolus applications were significantly higher than the dose increments between 0 and 5 (0.2% ± 0.2%), 5 and 10 (0.2% ± 0.2%), and 10 and 15 (0.2% ± 0.2%) days of bolus applications (p ≤ 0.003). The TPS overestimated the near-surface dose 10.8% at 2-mm below the skin surface.</p> <p>Conclusion</p> <p>In post-mastectomy 3D-CRT, using a 1-cm thick bolus in up to 15 of the total 25 fractions increased minimum skin doses with a tolerable increase in maximum doses.</p

    Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system

    Get PDF
    Background Advances in bio-telemetry technology have made it possible to automatically monitor and classify behavioural activities in many animals, including domesticated species such as dairy cows. Automated behavioural classification has the potential to improve health and welfare monitoring processes as part of a Precision Livestock Farming approach. Recent studies have used accelerometers and pedometers to classify behavioural activities in dairy cows, but such approaches often cannot discriminate accurately between biologically important behaviours such as feeding, lying and standing or transition events between lying and standing. In this study we develop a decision-tree algorithm that uses tri-axial accelerometer data from a neck-mounted sensor to both classify biologically important behaviour in dairy cows and to detect transition events between lying and standing. Results Data were collected from six dairy cows that were monitored continuously for 36 h. Direct visual observations of each cow were used to validate the algorithm. Results show that the decision-tree algorithm is able to accurately classify three types of biologically relevant behaviours: lying (77.42 % sensitivity, 98.63 % precision), standing (88.00 % sensitivity, 55.00 % precision), and feeding (98.78 % sensitivity, 93.10 % precision). Transitions between standing and lying were also detected accurately with an average sensitivity of 96.45 % and an average precision of 87.50 %. The sensitivity and precision of the decision-tree algorithm matches the performance of more computationally intensive algorithms such as hidden Markov models and support vector machines. Conclusions Biologically important behavioural activities in housed dairy cows can be classified accurately using a simple decision-tree algorithm applied to data collected from a neck-mounted tri-axial accelerometer. The algorithm could form part of a real-time behavioural monitoring system in order to automatically detect dairy cow health and welfare status

    A Genetic Polymorphism (rs17251221) in the Calcium-Sensing Receptor Gene (CASR) Is Associated with Stone Multiplicity in Calcium Nephrolithiasis

    Get PDF
    Calcium nephrolithiasis is one of the most common causes of renal stones. While the prevalence of this disease has increased steadily over the last 3 decades, its pathogenesis is still unclear. Previous studies have indicated that a genetic polymorphism (rs17251221) in the calcium-sensing receptor gene (CASR) is associated with the total serum calcium levels. In this study, we collected DNA samples from 480 Taiwanese subjects (189 calcium nephrolithiasis patients and 291 controls) for genotyping the CASR gene. Our results indicated no significant association between the CASR polymorphism (rs17251221) and the susceptibility of calcium nephrolithiasis. However, we found a significant association between rs17251221 and stone multiplicity. The risk of stone multiplicity was higher in patients with the GG+GA genotype than in those with the AA genotype (chi-square test:P = 0.008;odds ratio  =  4.79;95% confidence interval, 1.44–15.92;Yates' correction for chi-square test:P = 0.013). In conclusion, our results provide evidence supporting the genetic effects of CASR on the pathogenesis of calcium nephrolithiasis

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV
    corecore