29 research outputs found

    Protective Effects of BDNF against C-Reactive Protein-Induced Inflammation in Women

    Get PDF
    Background. Since high sensitivity C-reactive protein (hsCRP) is predictive of cardiovascular events, it is important to examine the relationship between hsCRP and other inflammatory and oxidative stress markers linked to cardiovascular disease (CVD) etiology. Previously, we reported that hsCRP induces the oxidative stress adduct 8-oxo-7,8-dihydro-2 ὔ deoxyguanosine (8-oxodG) and that these markers are significantly associated in women. Recent data indicates that brain-derived neurotrophic factor (BDNF) may have a role in CVD. Methods and Results. We examined BDNF levels in 3 groups of women that were age-and race-matched with low (<3 mg/L), mid (>3-20 mg/L), and high (>20 mg/L) hsCRP ( = 39 per group) and found a significant association between hsCRP, BDNF, and 8-oxodG. In African American females with high hsCRP, increases in BDNF were associated with decreased serum 8-oxodG. This was not the case in white women where high hsCRP was associated with high levels of BDNF and high levels of 8-oxodG. BDNF treatment of cells reduced CRP levels and inhibited CRP-induced DNA damage. Conclusion. We discovered an important relationship between hsCRP, 8-oxodG, and BDNF in women at hsCRP levels >3 mg/L. These data suggest that BDNF may have a protective role in counteracting the inflammatory effects of hsCRP

    Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence

    Get PDF
    Metformin, an oral hypoglycemic agent, has been used for decades to treat type 2 diabetes mellitus. Recent studies indicate that mice treated with metformin live longer and have fewer manifestations of age-related chronic disease. However, the molecular mechanisms underlying this phenotype are unknown. Here, we show that metformin treatment increases the levels of the microRNA-processing protein DICER1 in mice and in humans with diabetes mellitus. Our results indicate that metformin upregulates DICER1 through a post-transcriptional mechanism involving the RNA-binding protein AUF1. Treatment with metformin altered the subcellular localization of AUF1, disrupting its interaction with DICER1 mRNA and rendering DICER1 mRNA stable, allowing DICER1 to accumulate. Consistent with the role of DICER1 in the biogenesis of microRNAs, we found differential patterns of microRNA expression in mice treated with metformin or caloric restriction, two proven life-extending interventions. Interestingly, several microRNAs previously associated with senescence and aging, including miR-20a, miR-34a, miR-130a, miR-106b, miR-125, and let-7c, were found elevated. In agreement with these findings, treatment with metformin decreased cellular senescence in several senescence models in a DICER1- dependent manner. Metformin lowered p16 and p21 protein levels and the abundance of inflammatory cytokines and oncogenes that are hallmarks of the senescence-associated secretory phenotype (SASP). These data lead us to hypothesize that changes in DICER1 levels may be important for organismal aging and to propose that interventions that upregulate DICER1 expression (e.g., metformin) may offer new pharmacotherapeutic approaches for age-related disease

    Helicobacter pylori, persistent infection burden and structural brain imaging markers

    Get PDF
    Persistent infections, whether viral, bacterial or parasitic, including Helicobacter pylori infection, have been implicated in non-communicable diseases, including dementia and other neurodegenerative diseases. In this cross-sectional study, data on 635 cognitively normal participants from the UK Biobank study (2006–21, age range: 40–70 years) were used to examine whether H. pylori seropositivity (e.g. presence of antibodies), serointensities of five H. pylori antigens and a measure of total persistent infection burden were associated with selected brain volumetric structural MRI (total, white, grey matter, frontal grey matter (left/right), white matter hyperintensity as percent intracranial volume and bi-lateral sub-cortical volumes) and diffusion-weighted MRI measures (global and tract-specific bi-lateral fractional anisotropy and mean diffusivity), after an average 9–10 years of lag time. Persistent infection burden was calculated as a cumulative score of seropositivity for over 20 different pathogens. Multivariable-adjusted linear regression analyses were conducted, whereby selected potential confounders (all measures) and intracranial volume (sub-cortical volumes) were adjusted, with stratification by Alzheimer’s disease polygenic risk score tertile when exposures were H. pylori antigen serointensities. Type I error was adjusted to 0.007. We report little evidence of an association between H. pylori seropositivity and persistent infection burden with various volumetric outcomes (P > 0.007, from multivariable regression models), unlike previously reported in past research. However, H. pylori antigen serointensities, particularly immunoglobulin G against the vacuolating cytotoxin A, GroEL and outer membrane protein antigens, were associated with poorer tract-specific white matter integrity (P < 0.007), with outer membrane protein serointensity linked to worse outcomes in cognition-related tracts such as the external capsule, the anterior limb of the internal capsule and the cingulum, specifically at low Alzheimer’s disease polygenic risk. Vacuolating cytotoxin A serointensity was associated with greater white matter hyperintensity volume among individuals with mid-level Alzheimer’s disease polygenic risk, while among individuals with the highest Alzheimer’s disease polygenic risk, the urease serointensity was consistently associated with reduced bi-lateral caudate volumes and the vacuolating cytotoxin A serointensity was linked to reduced right putamen volume (P < 0.007). Outer membrane protein and urease were associated with larger sub-cortical volumes (e.g. left putamen and right nucleus accumbens) at middle Alzheimer’s disease polygenic risk levels (P < 0.007). Our results shed light on the relationship between H. pylori seropositivity, H. pylori antigen levels and persistent infection burden with brain volumetric structural measures. These data are important given the links between infectious agents and neurodegenerative diseases, including Alzheimer’s disease, and can be used for the development of drugs and preventive interventions that would reduce the burden of those diseases

    Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop

    Get PDF
    Paracrine and endocrine roles have increasingly been ascribed to extracellular vesicles (EVs) generated by multicellular organisms. Central to the biogenesis, content, and function of EVs are their delimiting lipid bilayer membranes. To evaluate research progress on membranes and EVs, the International Society for Extracellular Vesicles (ISEV) conducted a workshop in March 2018 in Baltimore, Maryland, USA, bringing together key opinion leaders and hands-on researchers who were selected on the basis of submitted applications. The workshop was accompanied by two scientific surveys and covered four broad topics: EV biogenesis and release; EV uptake and fusion; technologies and strategies used to study EV membranes; and EV transfer and functional assays. In this ISEV position paper, we synthesize the results of the workshop and the related surveys to outline important outstanding questions about EV membranes and describe areas of consensus. The workshop discussions and survey responses reveal that while much progress has been made in the field, there are still several concepts that divide opinion. Good consensus exists in some areas, including particular aspects of EV biogenesis, uptake and downstream signalling. Areas with little to no consensus include EV storage and stability, as well as whether and how EVs fuse with target cells. Further research is needed in these key areas, as a better understanding of membrane biology will contribute substantially towards advancing the field of extracellular vesicles.Fil: Russell, Ashley E.. University Johns Hopkins; Estados UnidosFil: Sneider, Alexandra. University Johns Hopkins; Estados UnidosFil: Witwer, Kenneth W.. University Johns Hopkins; Estados UnidosFil: Bergese, Paolo. Università Degli Studi Di Brescia; ItaliaFil: Bhattacharyya, Suvendra N.. Indian Institute of Chemical Biology; IndiaFil: Cocks, Alexander. Cardiff University; Reino UnidoFil: Cocucci, Emanuele. Ohio State University; Estados UnidosFil: Erdbrügger, Uta. University of Virginia; Estados UnidosFil: Falcon Perez, Juan M.. Ikerbasque Basque Foundation for Science; EspañaFil: Freeman, David W.. National Institute On Aging National Institute for Helth ; Estados UnidosFil: Gallagher, Thomas M.. Loyola University Of Chicago; Estados UnidosFil: Hu, Shuaishuai. Technological University Dublin; IrlandaFil: Huang, Yiyao. University Johns Hopkins; Estados Unidos. Southern Medical University; ChinaFil: Jay, Steven M.. University of Maryland; Estados UnidosFil: Kano, Shin-ichi. The University of Alabama at Birmingham School of Medicine; Estados UnidosFil: Lavieu, Gregory. Institut Curie; FranciaFil: Leszczynska, Aleksandra. University of California at San Diego; Estados UnidosFil: Llorente, Alicia M.. Oslo University Hospital; NoruegaFil: Lu, Quan. Harvard University. Harvard School of Public Health; Estados UnidosFil: Mahairaki, Vasiliki. University Johns Hopkins; Estados UnidosFil: Muth, Dillon C.. University Johns Hopkins; Estados UnidosFil: Noren Hooten, Nicole. National Institute On Aging National Institute for Helth ; Estados UnidosFil: Ostrowski, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Prada, Ilaria. Consiglio Nazionale delle Ricerche; ItaliaFil: Sahoo, Susmita. Icahn School of Medicine at Mount Sinai ; Estados UnidosFil: Schøyen, Tine Hiorth. Uit The Arctic University Of Norway; Noruega. University Johns Hopkins; Estados UnidosFil: Sheng, Lifuy. University of Washington. School of Medicine; Estados UnidosFil: Tesch, Deanna. Shaw University; Estados UnidosFil: Van Niel, Guillaume. No especifíca;Fil: Vandenbroucke, Roosmarijn E.. University of Ghent; BélgicaFil: Verweij, Frederik J.. No especifíca;Fil: Villar, Ana V.. Universidad de Cantabria; EspañaFil: Wauben, Marca. University of Utrecht; Países BajosFil: Wehman, Ann M.. Universität Würzburg; AlemaniaFil: Ardavan, Arzhang. Peking University; ; ChinaFil: Carter, David Raul Francisco. Oxford Brookes University; Reino UnidoFil: Vader, Pieter. University Medical Center Utrecht; Países Bajo

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence

    No full text
    Noren Hooten, Nicole et al.Metformin, an oral hypoglycemic agent, has been used for decades to treat type 2 diabetes mellitus. Recent studies indicate that mice treated with metformin live longer and have fewer manifestations of age-related chronic disease. However, the molecular mechanisms underlying this phenotype are unknown. Here, we show that metformin treatment increases the levels of the microRNA-processing protein DICER1 in mice and in humans with diabetes mellitus. Our results indicate that metformin upregulates DICER1 through a post-transcriptional mechanism involving the RNA-binding protein AUF1. Treatment with metformin altered the subcellular localization of AUF1, disrupting its interaction with DICER1 mRNA and rendering DICER1 mRNA stable, allowing DICER1 to accumulate. Consistent with the role of DICER1 in the biogenesis of microRNAs, we found differential patterns of microRNA expression in mice treated with metformin or caloric restriction, two proven life-extending interventions. Interestingly, several microRNAs previously associated with senescence and aging, including miR-20a, miR-34a, miR-130a, miR-106b, miR-125, and let-7c, were found elevated. In agreement with these findings, treatment with metformin decreased cellular senescence in several senescence models in a DICER1-dependent manner. Metformin lowered p16 and p21 protein levels and the abundance of inflammatory cytokines and oncogenes that are hallmarks of the senescence-associated secretory phenotype (SASP). These data lead us to hypothesize that changes in DICER1 levels may be important for organismal aging and to propose that interventions that upregulate DICER1 expression (e.g., metformin) may offer new pharmacotherapeutic approaches for age-related disease.This study was supported by the Intramural Research Program of the National Institutes of Health, National Institute on Aging.Peer Reviewe
    corecore