111 research outputs found

    Factors Associated With Rebound Hyperthermia After Targeted Temperature Management in Out-of-Hospital Cardiac Arrest Patients: An Explorative Substudy of the Time-Differentiated Therapeutic Hypothermia in Out-of-Hospital Cardiac Arrest Survivors Trial

    Get PDF
    OBJECTIVES:To investigate rebound hyperthermia following targeted temperature management after cardiac arrest and its impact on functional outcome.DESIGN:Post hoc analysis.SETTING:Ten European ICUs.PATIENTS:Patients included in the time-differentiated therapeutic hypothermia in out-of-hospital cardiac arrest survivors trial treated with targeted temperature management at 33°C for 48 or 24 hours. Favorable functional outcome was defined as a Cerebral Performance Category of 1 or 2 at 6 months.INTERVENTIONS:None.MEASUREMENTS AND MAIN RESULTS:Of 338 included patients, 103 (30%) experienced rebound hyperthermia defined as a maximum temperature after targeted temperature management and rewarming exceeding 38.5°C. Using multivariate logistic regression analysis, increasing age (odds ratio, 0.97; 95% CI, 0.95–0.99; p = 0.02) and severe acute kidney injury within 72 hours of ICU admission (odds ratio, 0.35; 95% CI, 0.13–0.91; p = 0.03) were associated with less rebound hyperthermia, whereas male gender (odds ratio, 3.94; 95% CI, 1.34–11.57; p = 0.01), highest C-reactive protein value (odds ratio, 1.04; 95% CI, 1.01–1.07; p = 0.02), and use of mechanical chest compression during cardiopulmonary resuscitation (odds ratio, 2.00; 95% CI, 1.10–3.67; p = 0.02) were associated with more rebound hyperthermia. Patients with favorable functional outcome spent less time after rewarming over 38.5°C (2.5% vs 6.3%; p = 0.03), 39°C (0.14% vs 2.7%; p CONCLUSIONS:One-third of targeted temperature management patients experience rebound hyperthermia, and it is more common in younger male patients with an aggravated inflammatory response and those treated with a mechanical chest compression device. Later onset of rebound hyperthermia and temperatures exceeding 38.5°C associate with unfavorable outcome.</p

    Digital Gaming for Improving the Functioning of People With Traumatic Brain Injury: Randomized Clinical Feasibility Study

    Get PDF
    Background Traumatic brain injury (TBI) is a major health problem that often requires intensive and long-term rehabilitation. Objective The aim of this study was to determine whether rehabilitative digital gaming facilitates cognitive functioning and general well-being in people with TBI. Methods A total of 90 Finnish-speaking adults with TBI (18-65 years) were recruited from an outpatient neuroscience clinic. The participants were randomly allocated to one of the three groups: a rehabilitation gaming group (n=29, intervention), an entertainment gaming group (n=29, active control), or a passive control group (n=32). The gaming groups were instructed to engage in gaming for a minimum of 30 min per day for 8 weeks. Primary and secondary outcomes were measured at three time points: before the intervention, after the intervention, and 3 months following the intervention. The primary outcome was cognitive status measured by processing speed and visuomotor tasks (The Trail Making Test; Wechsler Adult Intelligence Scale-Fourth Edition, WAIS-IV, symbol search, coding, and cancellation tasks). Secondary outcomes were attention and executive functions (Simon task), working memory (WAIS-IV digit span and Paced Auditory Serial Addition Test, PASAT), depression (Patient Health Questionnaire-9), self-efficacy (General Self-efficacy Scale), and executive functions (Behavior Rating Inventory of Executive Function-Adult Version). Feasibility information was assessed (acceptability, measurement instruments filled, dropouts, adherence, usability, satisfaction, and possible future use). Cognitive measurements were conducted in face-to-face interviews by trained psychologists, and questionnaires were self-administered. Results The effects of rehabilitation gaming did not significantly differ from the effects of entertainment gaming or being in a passive control group. For primary outcomes and PASAT tests, the participants in all three groups showed overall improvement in test scores across the three measurement points. However, depression scores increased significantly between baseline and after 8 weeks and between baseline and after 3 months in the rehabilitative gaming group. No differences were found in patients’ self-efficacy between the three measuring points in any of the groups. Participants did use the games (rehabilitation group: 93%, 27/29; entertainment group 100%, 29/29). Games were seen as a usable intervention (rehabilitation group: 70%, 14/29; entertainment group: 83%, 20/29). The rehabilitation group was less satisfied with the gaming intervention (68%, 13/29 vs 83%, 20/29), but they were more willing to use the game after the intervention period (76%, 16/29 vs 63%, 15/29). Total time spent on gaming during the intervention period was low (15.22 hour rehabilitation gaming group, 19.22 hour entertainment gaming group). Conclusions We did not find differences between the groups in improvement in the outcome measures. The improvements in test performance by all three groups may reflect rehearsal effects. Entertainment gaming had elements that could be considered when rehabilitative games are designed for, implemented in, and assessed in larger clinical trials for persons with TBI.</p

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    Get PDF
    Dengue virus (DENV) represents a major disease burden in tropical and subtropical regions of the world, and has shown an increase in the number of cases in recent years. DENV is transmitted to humans through the bite of an infected mosquito, typically Aedes aegypti, after which it begins the infection and replication lifecycle within human cells. To perform the molecular functions required for invasion, replication, and spread of the virus, proteins encoded by DENV must interact with and alter the behavior of protein networks in both of these hosts. In this work, we used a computational method based on protein structures to predict interactions between DENV and its human and insect hosts. We predict numerous interactions, with many involved in known cell death, stress, and immune system pathways. Further investigation of these predicted protein-protein interactions should provide targets to combat the clinical manifestations of this disease in humans as well as points of intervention focused within the mosquito vector

    Contribution of rare and common variants to intellectual disability in a sub-isolate of Northern Finland

    Get PDF
    The contribution of de novo variants in severe intellectual disability (ID) has been extensively studied whereas the genetics of mild ID has been less characterized. To elucidate the genetics of milder ID we studied 442 ID patients enriched for mild ID (>50%) from a population isolate of Finland. Using exome sequencing, we show that rare damaging variants in known ID genes are observed significantly more often in severe (27%) than in mild ID (13%) patients. We further observe a significant enrichment of functional variants in genes not yet associated with ID (OR: 2.1). We show that a common variant polygenic risk significantly contributes to ID. The heritability explained by polygenic risk score is the highest for educational attainment (EDU) in mild ID (2.2%) but lower for more severe ID (0.6%). Finally, we identify a Finland enriched homozygote variant in the CRADD ID associated gene.Peer reviewe

    Genomic correlates of glatiramer acetate adverse cardiovascular effects lead to a novel locus mediating coronary risk

    Get PDF
    Glatiramer acetate is used therapeutically in multiple sclerosis but also known for adverse effects including elevated coronary artery disease (CAD) risk. The mechanisms underlying the cardiovascular side effects of the medication are unclear. Here, we made use of the chromosomal variation in the genes that are known to be affected by glatiramer treatment. Focusing on genes and gene products reported by drug-gene interaction database to interact with glatiramer acetate we explored a large meta-analysis on CAD genome-wide association studies aiming firstly, to investigate whether variants in these genes also affect cardiovascular risk and secondly, to identify new CAD risk genes. We traced association signals in a 200-kb region around genomic positions of genes interacting with glatiramer in up to 60 801 CAD cases and 123 504 controls. We validated the identified association in additional 21 934 CAD cases and 76 087 controls. We identified three new CAD risk alleles within the TGFB1 region on chromosome 19 that independently affect CAD risk. The lead SNP rs12459996 was genome-wide significantly associated with CAD in the extended meta-analysis (odds ratio 1.09, p = 1.58×10-12). The other two SNPs at the locus were not in linkage disequilibrium with the lead SNP and by a conditional analysis showed p-values of 4.05 × 10-10 and 2.21 × 10-6. Thus, studying genes reported to interact with glatiramer acetate we identified genetic variants that concordantly with the drug increase the risk of CAD. Of these, TGFB1 displayed signal for association. Indeed, the gene has been associated with CAD previously in both in vivo and in vitro studies. Here we establish genome-wide significant association with CAD in large human samples.This work was supported by grants from the Fondation Leducq (CADgenomics: Understanding CAD Genes, 12CVD02), the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (e:AtheroSysMed, grant 01ZX1313A-2014 and SysInflame, grant 01ZX1306A), and the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no HEALTH-F2-2013-601456 (CVgenes-at-target). Further grants were received from the DFG as part of the Sonderforschungsbereich CRC 1123 (B2). T.K. was supported by a DZHK Rotation Grant. I.B. was supported by the Deutsche Forschungsgemeinschaft (DFG) cluster of excellence ‘Inflammation at Interfaces’. F.W.A. is supported by a Dekker scholarship-Junior Staff Member 2014T001 - Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.Peer reviewe

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe
    corecore