8 research outputs found

    Turbocharged molecular discovery of OLED emitters: from high-throughput quantum simulation to highly efficient TADF devices

    Get PDF
    Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%

    Convolutional Networks on Graphs for Learning Molecular Fingerprints.

    Get PDF
    We introduce a convolutional neural network that operates directly on graphs. These networks allow end-to-end learning of prediction pipelines whose inputs are graphs of arbitrary size and shape. The architecture we present generalizes standard molecular feature extraction methods based on circular fingerprints. We show that these data-driven features are more interpretable, and have better predictive performance on a variety of tasks.Chemistry and Chemical Biolog

    ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina11This document was approved by the American College of Cardiology Board of Trustees in March 1999, the American Heart Association Science Advisory and Coordinating Committee in March 1999, and the American College of Physicians-American Society of Internal Medicine Board of Regents in February 1999.When citing this document, please use the following citation format: Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM, Grunwald MA, Levy D, Lytle BW, O’Rourke RA, Schafer WP, Williams SV. ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). J Am Coll Cardiol 1999;33:2092–197.This document is available on the World Wide Web sites of the American College of Cardiology (www.acc.org) and the American Heart Association (www.americanheart.org). Reprints of this document are available by calling 1-800-253-4636 or writing the American College of Cardiology, Educational Services, at 9111 Old Georgetown Road, Bethesda, MD 20814-1699. Ask for reprint number 71-0166. To obtain a reprint of the Executive Summary and Recommendations published in the June 1, 1999 issue of Circulation, ask for reprint number 71-0167. To purchase bulk reprints (specify version and reprint number): Up to 999 copies call 1-800-611-6083 (US only) or fax 413-665-2671; 1000 or more copies call 214-706-1466, fax 214-691-6342, or e-mail [email protected]

    No full text
    corecore