376 research outputs found

    Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability

    Get PDF
    AbstractAn emerging paradigm in soil science suggests microbes can perform ‘N mining’ from recalcitrant soil organic matter (SOM) in conditions of low N availability. However, this requires the production of extracellular structures rich in N (including enzymes and structural components) and thus defies stoichiometric expectation. We set out to extract newly synthesised peptides from the extracellular matrix in soil and compare the amino acid (AA) profiles, N incorporation and AA dynamics in response to labile inputs of contrasting C/N ratio. Glycerol was added both with and without an inorganic source of N (10% 15N labelled NH4NO3) to a soil already containing a large pool of refractory SOM and incubated for 10 days. The resulting total soil peptide (TSP) and extracellular pools were compared using colorimetric methods, gas chromatography, and isotope ratio mass spectrometry. N isotope compositions showed that the extracellular polymeric substance (EPS) contained a greater proportion of products formed de novo than did TSP, with hydrophobic EPS-AAs (leucine, isoleucine, phenylalanine, hydroxyproline and tyrosine) deriving substantially more N from the inorganic source provided. Quantitative comparison between extracts showed that the EPS contained greater relative proportions of alanine, glycine, proline, phenylalanine and tyrosine. The greatest increases in EPS-peptide and EPS-polysaccharide concentrations occurred at the highest C/N ratios. All EPS-AAs responded similarly to treatment whereas the responses of TSP were more complex. The results suggest that extracellular investment of N (as EPS peptides) is a microbial survival mechanism in conditions of low N/high C which, from an evolutionary perspective, must ultimately lead to the tendency for increased N returns to the microbial biomass. A conceptual model is proposed that describes the dynamics of the extracellular matrix in response to the C/N ratio of labile inputs

    Implications of the HERA Events for the R-Parity Breaking SUSY Signals at Tevatron

    Get PDF
    The favoured R-parity violating SUSY scenarios for the anomalous HERA events correspond to top and charm squark production via the λ131\lambda'_{131} and λ121\lambda'_{121} couplings. In both cases the corresponding electronic branching fractions of the squarks are expected to be 1\ll 1. Consequently the canonical leptoquark signature is incapable of probing these scenarios at the Tevatron collider over most of the MSSM parameter space. We suggest alternative signatures for probing them at Tevatron, which seem to be viable over the entire range of MSSM parameters.Comment: 20 pages Latex file with 4 ps files containing 4 figure

    Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil

    Get PDF
    Sequences of nodD, a gene found only in rhizobia, were amplified from total community DNA isolated from a pasture soil. The polymerase chain reaction (PCR) primers used, Y5 and Y6, match nodD from Rhizobium leguminosarum biovar trifolii, R. leguminosarum biovar viciae and Sinorhizobium meliloti. The PCR product was cloned and yielded 68 clones that were identified by restriction pattern as derived from biovar trifolii [11 restriction fragment length polymorphism (RFLP) types] and 15 clones identified as viciae (seven RFLP types). These identifications were confirmed by sequencing. There were no clones related to S. meliloti nodD. For comparison, 122 strains were isolated from nodules of white clover (Trifolium repens) growing at the field site, and 134 from nodules on trap plants of T. repens inoculated with the soil. The nodule isolates were of four nodD RFLP types, with 77% being of a single type. All four of these patterns were also found among the clones from soil DNA, and the same type was the most abundant, although it made up only 34% of the trifolii-like clones. We conclude that clover selects specific genotypes from the available soil population, and that R. leguminosarum biovar trifolii was approximately five times more abundant than biovar viciae in this pasture soil, whereas S. meliloti was rare

    Theory of spin-polarized bipolar transport in magnetic p-n junctions

    Full text link
    The interplay between spin and charge transport in electrically and magnetically inhomogeneous semiconductor systems is investigated theoretically. In particular, the theory of spin-polarized bipolar transport in magnetic p-n junctions is formulated, generalizing the classic Shockley model. The theory assumes that in the depletion layer the nonequilibrium chemical potentials of spin up and spin down carriers are constant and carrier recombination and spin relaxation are inhibited. Under the general conditions of an applied bias and externally injected (source) spin, the model formulates analytically carrier and spin transport in magnetic p-n junctions at low bias. The evaluation of the carrier and spin densities at the depletion layer establishes the necessary boundary conditions for solving the diffusive transport equations in the bulk regions separately, thus greatly simplifying the problem. The carrier and spin density and current profiles in the bulk regions are calculated and the I-V characteristics of the junction are obtained. It is demonstrated that spin injection through the depletion layer of a magnetic p-n junction is not possible unless nonequilibrium spin accumulates in the bulk regions--either by external spin injection or by the application of a large bias. Implications of the theory for majority spin injection across the depletion layer, minority spin pumping and spin amplification, giant magnetoresistance, spin-voltaic effect, biasing electrode spin injection, and magnetic drift in the bulk regions are discussed in details, and illustrated using the example of a GaAs based magnetic p-n junction.Comment: 36 pages, 11 figures, 2 table

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    Probing R-parity violating models of neutrino mass at the Tevatron via top Squark decays

    Full text link
    We have estimated the limiting branching ratio of the R-parity violating (RPV) decay of the lighter top squark, \tilde t_1 \ar l^+ d (l=el=e or μ\mu and d is a down type quark of any flavor), as a function of top squark mass(\MST) for an observable signal in the di-lepton plus di-jet channel at the Tevatron RUN-II experiment with 2 fb1^{-1} luminosity. Our simulations indicate that the lepton number violating nature of the underlying decay dynamics can be confirmed via the reconstruction of \MST. The above decay is interesting in the context of RPV models of neutrino mass where the RPV couplings (λi3j\lambda'_{i3j}) driving the above decay are constrained to be small (\lsim 10^{-3} - 10^{-4} ). If t~1\tilde t_1 is the next lightest super particle - a theoretically well motivated scenario - then the RPV decay can naturally compete with the R-parity conserving (RPC) modes which also have suppressed widths. The model independent limiting BR can delineate the parameter space in specific supersymmetric models, where the dominating RPV decay is observable and predict the minimum magnitude of the RPV coupling that will be sensitive to Run-II data. We have found it to be in the same ballpark value required by models of neutrino mass, for a wide range of \MST. A comprehensive future strategy for linking top squark decays with models of neutrino mass is sketched.Comment: 28 pages, 14 Figure

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
    corecore