453 research outputs found

    Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels

    Get PDF
    Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df ) of the fibrin network, the gel network formation time (TGP ) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df , consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties

    The Large Scale Structure in the Universe: From Power-Laws to Acoustic Peaks

    Full text link
    The most popular tools for analysing the large scale distribution of galaxies are second-order spatial statistics such as the two-point correlation function or its Fourier transform, the power spectrum. In this review, we explain how our knowledge of cosmic structures, encapsulated by these statistical descriptors, has evolved since their first use when applied on the early galaxy catalogues to the present generation of wide and deep redshift surveys, incorporating the most challenging discovery in the study of the galaxy distribution: the detection of Baryon Acoustic Oscillations.Comment: 20 pages, 12 figures, to appear in "Data Analysis in Cosmology", Lecture Notes in Physics, 2008, eds. V. J. Martinez, E. Saar, E. Martinez-Gonzalez, and M.J. Pons-Borderia, Springer-Verla

    On the anomalous large-scale flows in the Universe

    Full text link
    Recent combined analyses of the CMB and galaxy cluster data reveal unexpectedly large and anisotropic peculiar velocity fields at large scales. We study cosmic models with included vorticity, acceleration and total angular momentum of the Universe in order to understand the phenomenon. The Zeldovich model is used to mimic the low redshift evolution of the angular momentum. Solving coupled evolution equations of the second kind for density-contrast in corrected Ellis-Bruni covariant and gauge-invariant formalism one can properly normalize and evaluate integrated Sachs-Wolfe effect and peculiar velocity field. The theoretical results compared to the observations favor a much larger matter content of the Universe than that of the concordance model. Large-scale flows appear anisotropic with dominant components placed in the plane perpendicular to the axis of vorticity(rotation). The integrated Sachs-Wolfe term has negative contribution to the CMB fluctuations for the negative cosmological constant and it can explain the observed small power of the CMB TT spectrum at large scales. The rate of the expansion of the Universe can be substantially affected by the angular momentum if its magnitude is large enough.Comment: 13 pages, 6 tables, 4 figures, 36 references; version to appear in Eur. Phys. J.

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    corecore