790 research outputs found

    Rotational symmetry of self-similar solutions to the Ricci flow

    Full text link
    Let (M,g) be a three-dimensional steady gradient Ricci soliton which is non-flat and \kappa-noncollapsed. We prove that (M,g) is isometric to the Bryant soliton up to scaling. This solves a problem mentioned in Perelman's first paper.Comment: Final version, to appear in Invent. Mat

    Microwave treatment of electric arc furnace dust with Tetrabromobisphenol A: Dielectric characterization and pyrolysis-leaching

    Get PDF
    In the present work microwave treatment of electric arc furnace dust (EAFD) mixed with tetrabromobisphenol A (TBBPA) was investigated. A range of characterization techniques were used to understand the thermal behaviour of TBBPA-EAFD mixtures under microwave pyrolysis conditions. Dielectric and thermal properties of EAFD, TBBPA and their mixtures were determined. Both the dielectric constant and loss factor of the mixture were found to vary considerably with temperature and subsequently it was found that the mixtures of these materials absorbed microwaves effectively, especially at temperatures above 170 °C. The high loss tangent of EAFD-TBBPA mixture above 170 °C resulted in fast heating and high temperatures (above 700 °C) resulting in reduction of Fe, Pb and Zn to their metallic form. This resulted in low recoveries of both Zn and Pb when the residue was leached in water. The recovery of Zn varied between 14 and 52 wt,%, while Pb recovery varied between 3 and 31 wt.% depending on microwave treatment efficiency. The low recovery of Zn and Pb could be ascribed by the reduction of metal oxides into their metallic form. More importantly this work has shown great selectivity in the leachability of both zinc and iron; with iron being left in the solid residue

    The perseverance of Pacioli's goods inventory accounting system

    Get PDF
    This paper details sources of the 'undoubtedly strange' (Yamey, 1994a, p.119) system of goods inventory records described in Pacioli’s 1494 bookkeeping treatise and traces the longevity and widespread use of this early perpetual inventory recording (EPIR) system in English language texts. By doing so and contrasting this system with the bookkeeping treatment of modern texts, it is shown that the EPIR system persisted as the dominant form of goods inventory accounting for between 400 and 500 years and that the reasons for its demise are worthy of further consideration and research

    Mutual Events in the Cold Classical Transneptunian Binary System Sila and Nunam

    Full text link
    Hubble Space Telescope observations between 2001 and 2010 resolved the binary components of the Cold Classical transneptunian object (79360) Sila-Nunam (provisionally designated 1997 CS29). From these observations we have determined the circular, retrograde mutual orbit of Nunam relative to Sila with a period of 12.50995 \pm 0.00036 days and a semimajor axis of 2777 \pm 19 km. A multi-year season of mutual events, in which the two near-equal brightness bodies alternate in passing in front of one another as seen from Earth, is in progress right now, and on 2011 Feb. 1 UT, one such event was observed from two different telescopes. The mutual event season offers a rich opportunity to learn much more about this barely-resolvable binary system, potentially including component sizes, colors, shapes, and albedo patterns. The low eccentricity of the orbit and a photometric lightcurve that appears to coincide with the orbital period are consistent with a system that is tidally locked and synchronized, like the Pluto-Charon system. The orbital period and semimajor axis imply a system mass of (10.84 \pm 0.22) \times 10^18 kg, which can be combined with a size estimate based on Spitzer and Herschel thermal infrared observations to infer an average bulk density of 0.72 +0.37 -0.23 g cm^-3, comparable to the very low bulk densities estimated for small transneptunian binaries of other dynamical classes.Comment: In press in Icaru

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Personality traits and behavioral patterns associated with systolic blood pressure levels in college males

    Full text link
    1. 1. Seventy-four young white male college students (out of an original pool of 800 examined) were selected for having high or low systolic readings taken on a registration line. These students were then classified according to their paired casual, usual, and sustained levels of systolic blood pressure. Of 21 persons with a high paired casual systolic blood pressure (two independent determinations in excess of 140 mm Hg), 16 were also characterized as belonging to a `usual high' group (blood pressure in excess of 131 mm on resting and repeated home readings). A `sustained' high blood pressure group (n = 11) was further obtained by selecting those who were `high' on their paired casual and their `usual' blood pressure levels. These blood pressure patterns were then related with self ratings on the Cattell 16 PF questionnaire.2. 2. A consistent elevation to the upper range of normal in the systolic blood pressure of these college males was associated with `submissiveness' and `sensitivity' as defined by Cattell's 16 PF questionnaire. Subjects with `high paired casual' systolic blood pressures described themselves as motivated to obtain social contacts, but in a `sensitive' and `anxious' manner.3. 3. Subjects who were later selected for having a single high systolic blood pressure reading taken on first entering the physician's office (their second casual reading) tended more frequently to yield in an argument and then afterwards to change their private opinions toward agreement with partners who had an initially low systolic reading.4. 4. Whereas obesity was highly correlated with higher systolic levels, the psychological correlates of obesity were different from those related to elevated `casual' or `sustained' blood pressure. Obese subjects in this population appeared to be physically active, and more confident, though somewhat anxious under the stress of school examinations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32127/1/0000180.pd

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011
    • …
    corecore