232 research outputs found

    Swelling Behaviour of Starch-g-Acrylic Acid Hydrogel and its Potential Application in Removal of Rhodamine B and Alkali Blue Dyes

    Get PDF
    Starch-g-acrylic acid hydrogel was prepared by free radical polymerization technique adopting potassium persulphate (KPS) as an initiator and N’N-methylenebisacrylamide (MBA) as a linking agent. The aim of the research is to inspect the potentials of starch-based hydrogel in remediating wastewater. Fourier Transform Infrared (FT-IR) spectroscopy was used to find the formation of hydrogel while Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) were used for the characterization of the hydrogel. The FT-IR spectroscopy confirmed hydrogel formation. The DSC results showed that the generated hydrogel is thermally stable, and the SEM depicts a good porous site for dye adsorption. Batch adsorption for Rhodamine B (RDB) and Alkali blue (AB) dyes under the variation of contact time was 105 minutes for both dyes with percentage removal of 89.80 and 60.32%, adsorbent dose was 0.4 and 0.8 g with percentage removal of 86.42 and 57.95%, concentration was 50 and 30 ppm with percentage removal of 67.01 and 77.18% and pH was 8 for both dyes with percentage removal of 77.43 and 79.13% as the optimum. The results indicates that acrylic acid monomer was efficiently grafted on the starch, and the adsorption method correlated with Freundlich isotherm equation. It was concluded that the starch-based hydrogel is an appropriate adsorbent and can be explored for industrial wastewater treatment

    Capturing wheat phenotypes at the genome level

    Get PDF
    Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world’s most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public–private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons

    Get PDF
    A search is performed for a new resonance decaying into a lighter resonance and a Z boson. Two channels are studied, targeting the decay of the lighter resonance into either a pair of oppositely charged τ leptons or a bb‾ pair. The Z boson is identified via its decays to electrons or muons. The search exploits data collected by the CMS experiment at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb −1 . No significant deviations are observed from the standard model expectation and limits are set on production cross sections and parameters of two-Higgs-doublet models

    Search for a low-mass pseudoscalar Higgs boson produced in association with a bb⁻ pair in pp collisions at √s=8 TeV

    Get PDF
    A search is reported for a light pseudoscalar Higgs boson decaying to a pair of tau leptons, produced in association with a b (b) over bar pair, in the context of two-Higgs-doublet models. The results are based on pp collision data at a centre-of-mass energy of 8 TeV collected by the CMS experiment at the LHC and corresponding to an integrated luminosity of 19.7 fb(-1). Pseudoscalar boson masses between 25 and 80 GeV are probed. No evidence for a pseudoscalar boson is found and upper limits are set on the product of cross section and branching fraction to tau pairs between 7 and 39 pb at the 95% confidence level. This excludes pseudoscalar A bosons with masses between 25 and 80 GeV, with SM-like Higgs boson negative couplings to down-type fermions, produced in association with bb pairs, in Type II, two-Higgs-doublet models. (C) 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommonnorg/licensesiby/4.01)

    Phenomenological MSSM interpretation of CMS searches in pp collisions at √s=7 and 8 TeV

    Get PDF
    Searches for new physics by the CMS collaboration are interpreted in the framework of the phenomenological minimal supersymmetric standard model (pMSSM). The data samples used in this study were collected at root s = 7 and 8 TeV and have integrated luminosities of 5.0 fb(-1) and 19.5 fb(-1), respectively. A global Bayesian analysis is performed, incorporating results from a broad range of CMS supersymmetry searches, as well as constraints from other experiments. Because the pMSSM incorporates several well-motivated assumptions that reduce the 120 parameters of the MSSM to just 19 parameters defined at the electroweak scale, it is possible to assess the results of the study in a relatively straightforward way. Approximately half of the model points in a potentially accessible subspace of the pMSSM are excluded, including all pMSSM model points with a gluino mass below 500 GeV, as well as models with a squark mass less than 300 GeV. Models with chargino and neutralino masses below 200 GeV are disfavored, but no mass range of model points can be ruled out based on the analyses considered. The nonexcluded regions in the pMSSM parameter space are characterized in terms of physical processes and key observables, and implications for future searches are discussed
    corecore