966 research outputs found

    Initial management of potential occult scaphoid fracture in Australasia

    Get PDF
    AIM: To characterise current management of adult patients with possible occult scaphoid fracture in Australasian emergency departments. METHODS: Internet-based survey of Directors of Emergency Medicine Training throughout Australasia. Data collected included the most common management used in ED for patients with possible occult scaphoid fracture and whether there was a guideline regarding management of such cases. Data are reported as descriptive statistics. RESULTS: 61 responses were received (response rate 73%). The most common management reported was immobilisation in a backslab (23, 38%) or full cast (19, 32%) with clinical assessment and re-X-ray in 7-10 days. CT scan within 7 days was used by 9 (15%), bone scan within 7 days by 6 (10%) and MRI within 7 days by 3 (5%). Very few sites were using same day/next day CT or MRI. Eighty-three percent of sites reported not having a guideline/protocol for this condition. CONCLUSION: The traditional approach to management of possible occult scaphoid fracture of immobilisation with re-X-ray at 7-10 days remains the most commonly used in Australasia, despite evidence that this is probably over-treatment with significant consequences for patients. The place of advanced imaging for investigation of potential scaphoid fractures requires further research

    Higgs production as a probe of anomalous top couplings

    Full text link
    The LHC may be currently seeing the first hints of the Higgs boson. The dominant production mode for the Higgs at the LHC involves a top-quark loop. An accurate measurement of Higgs production cross-sections and decay widths can thus be used to obtain limits on anomalous top couplings. We find that such an exercise could potentially yield constraints that are stronger than those derived from low-energy observables as well as direct bounds expected from the top pair-production process.Comment: Version published in JHE

    Evidence for the exclusive decay Bc+- to J/psi pi+- and measurement of the mass of the Bc meson

    Get PDF
    We report first evidence for a fully reconstructed decay mode of the B_c^{\pm} meson in the channel B_c^{\pm} \to J/psi \pi^{\pm}, with J/psi \to mu^+mu^-. The analysis is based on an integrated luminosity of 360 pb$^{-1} in p\bar{p} collisions at 1.96 TeV center of mass energy collected by the Collider Detector at Fermilab. We observe 14.6 \pm 4.6 signal events with a background of 7.1 \pm 0.9 events, and a fit to the J/psi pi^{\pm} mass spectrum yields a B_c^{\pm} mass of 6285.7 \pm 5.3(stat) \pm 1.2(syst) MeV/c^2. The probability of a peak of this magnitude occurring by random fluctuation in the search region is estimated as 0.012%.Comment: 7 pages, 3 figures. Version 3, accepted by PR

    Top quark mass measurement using the template method at CDF

    Get PDF
    We present a measurement of the top quark mass in the lepton+jets and dilepton channels of ttˉt\bar{t} decays using the template method. The data sample corresponds to an integrated luminosity of 5.6 fb−1^{-1} of ppˉp\bar{p} collisions at Tevatron with s=1.96\sqrt{s}=1.96 TeV, collected with the CDF II detector. The measurement is performed by constructing templates of three kinematic variables in the lepton+jets and two kinematic variables in the dilepton channel. The variables are two reconstructed top quark masses from different jets-to-quarks combinations and the invariant mass of two jets from the WW decay in the lepton+jets channel, and a reconstructed top quark mass and mT2m_{T2}, a variable related to the transverse mass in events with two missing particles, in the dilepton channel. The simultaneous fit of the templates from signal and background events in the lepton+jets and dilepton channels to the data yields a measured top quark mass of Mtop=172.1±1.1(stat)±0.9(syst).M_{top} = 172.1 \pm 1.1(stat) \pm 0.9(syst).Comment: submitted to Phys. Rev.

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using 318 pb^{-1} of data collected with the Collider Detector at Fermilab. We select ttbar decays into the final states e nu + jets and mu nu + jets, in which at least one b quark from the t-quark decays is identified using a secondary vertex-finding algorithm. Assuming a top quark mass of 178 GeV/c^2, we measure a cross section of 8.7 +-0.9 (stat) +1.1-0.9 (syst) pb. We also report the first observation of ttbar with significance greater than 5 sigma in the subsample in which both b quarks are identified, corresponding to a cross section of 10.1 +1.6-1.4(stat)+2.0-1.3 (syst) pb.Comment: Accepted for publication in Physics Review Letters, 7 page

    Measurement of the Helicity Fractions of W Bosons from Top Quark Decays Using Fully Reconstructed top-antitop Events with CDF II

    Get PDF
    We present a measurement of the fractions F_0 and F_+ of longitudinally polarized and right-handed W bosons in top quark decays using data collected with the CDF II detector. The data set used in the analysis corresponds to an integrated luminosity of approximately 318 pb -1. We select ttbar candidate events with one lepton, at least four jets, and missing transverse energy. Our helicity measurement uses the decay angle theta*, which is defined as the angle between the momentum of the charged lepton in the W boson rest frame and the W momentum in the top quark rest frame. The cos(theta*) distribution in the data is determined by full kinematic reconstruction of the ttbar candidates. We find F_0 = 0.85 +0.15 -0.22 (stat) +- 0.06 (syst) and F_+ = 0.05 +0.11 -0.05 (stat) +- 0.03 (syst), which is consistent with the standard model prediction. We set an upper limit on the fraction of right-handed W bosons of F_+ < 0.26 at the 95% confidence level.Comment: 11 pages, 2 figures, submitted to Phys. Rev.

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of B(t->Wb)/B(t->Wq) at the Collider Detector at Fermilab

    Get PDF
    We present a measurement of the ratio of top-quark branching fractions R= B(t -> Wb)/B(t -> Wq), where q can be a b, s or a d quark, using lepton-plus-jets and dilepton data sets with integrated luminosity of ~162 pb^{-1} collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of t-tbar events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.Comment: 7 pages, 2 figures, published in Physical Review Letters; changes made to be consistent with published versio

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
    • 

    corecore