59 research outputs found

    Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour

    Get PDF
    In this paper, the electrical properties of ternary nanocomposites based on thermoplastic polyurethane (TPU) and multi-walled carbon nanotubes (MWCNTs) are studied. In particular two nanofillers - differing in shape and electrical properties - are used in conjunction with MWCNTs: an electrically conductive CB and an insulating needle-like nanoclay, sepiolite. The ternary nanocomposites were manufactured in a number of forms (extruded pellets, filaments and compression moulded films) and their morphological and electrical properties characterised as function of time and temperature. The presence of both secondary nanofillers is found to affect the formation of a percolating network of MWCNTs in TPU, inducing a reduced percolation threshold and tuneable strain sensing ability. These ternary nanocomposites can find application as conductive and multi-functional materials for flexible electronics, sensing films and fibres in smart textiles. (c) 2012 Elsevier Ltd. All rights reserved

    Thermal Conductivity of Carbon Nanotubes and their Polymer Nanocomposites: A Review

    Get PDF
    Thermally conductive polymer composites offer new possibilities for replacing metal parts in several applications, including power electronics, electric motors and generators, heat exchangers, etc., thanks to the polymer advantages such as light weight, corrosion resistance and ease of processing. Current interest to improve the thermal conductivity of polymers is focused on the selective addition of nanofillers with high thermal conductivity. Unusually high thermal conductivity makes carbon nanotube (CNT) the best promising candidate material for thermally conductive composites. However, the thermal conductivities of polymer/CNT nanocomposites are relatively low compared with expectations from the intrinsic thermal conductivity of CNTs. The challenge primarily comes from the large interfacial thermal resistance between the CNT and the surrounding polymer matrix, which hinders the transfer of phonon dominating heat conduction in polymer and CNT. This article reviews the status of worldwide research in the thermal conductivity of CNTs and their polymer nanocomposites. The dependence of thermal conductivity of nanotubes on the atomic structure, the tube size, the morphology, the defect and the purification is reviewed. The roles of particle/polymer and particle/particle interfaces on the thermal conductivity of polymer/CNT nanocomposites are discussed in detail, as well as the relationship between the thermal conductivity and the micro- and nano-structure of the composite

    Influence of Polymer Particle Size on the Percolation Threshold of Electrically Conductive Latex-Based Composites

    No full text
    Monodispersed copolymer emulsions, each with a different polymer particle size, were used to investigate the effect of particle size on the electrical and thermomechanical properties of carbon black (CB)-filled segregated network composites. These emulsions were synthesized with equal moles of methyl methacrylate and butyl acrylate, with latex particle size ranging from 83 to 771 nm. The electrical percolation threshold was found to decrease from 2.7 to 1.1 vol % CB as the latex particle size was increased. Microstructural images reveal diminished latex coalescence, and improved CB segregation, with increasing latex particle size. In general, coalescence is shown to increase for all systems with increasing CB concentration. Furthermore, all systems exhibited a similar maximum electrical conductivity plateau of 0.7 S cm(-1), albeit at lower concentration for larger latex particle size. This ability to tailor percolation threshold with latex particle size provides an important tool for manipulating electrical and mechanical properties of polymer nanocomposites. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1547-1554, 201

    High-throughput screening of thiol-ene click chemistries for bone adhesive polymers

    No full text
    Metal surgical pins and screws are employed in millions of orthopedic surgical procedures every year worldwide, but their usability is limited in the case of complex, comminuted fractures or in surgeries on smaller bones. Therefore, replacing such implants with a bone adhesive material has long been considered an attractive option. However, synthesizing a biocompatible bone adhesive with a high bond strength that is simple to apply presents many challenges. To rapidly identify candidate polymers for a biocompatible bone adhesive, we employed a high-throughput screening strategy to assess human mesenchymal stromal cell (hMSC) adhesion toward a library of polymers synthesized via thiol-ene click chemistry. We chose thiol-ene click chemistry because multifunctional monomers can be rapidly cured via ultraviolet (UV) light while minimizing residual monomer, and it provides a scalable manufacturing process for candidate polymers identified from a high-throughput screen. This screening methodology identified a copolymer (1-S2-FT01) composed of the monomers 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO) and pentaerythritol tetrakis (3-mercaptopropionate) (PETMP), which supported highest hMSC adhesion across a library of 90 polymers. The identified copolymer (1-S2-FT01) exhibited favorable compressive and tensile properties compared to existing commercial bone adhesives and adhered to bone with adhesion strengths similar to commercially available bone glues such as Histoacryl. Furthermore, this cytocompatible polymer supported osteogenic differentiation of hMSCs and could adhere 3D porous polymer scaffolds to the bone tissue, making this polymer an ideal candidate as an alternative bone adhesive with broad utility in orthopedic surgery
    • …
    corecore