34 research outputs found

    Transient climate simulations of the deglaciation 21–9 thousand years before present; PMIP4 Core experiment design and boundary conditions

    Get PDF
    The last deglaciation, which marked the transition between the last glacial and present interglacial periods, was punctuated by a series of rapid (centennial and decadal) climate changes. Numerical climate models are useful for investigating mechanisms that underpin the events, especially now that some of the complex models can be run for multiple millennia. We have set up a Paleoclimate Modelling Intercomparison Project (PMIP) working group to coordinate efforts to run transient simulations of the last deglaciation, and to facilitate the dissemination of expertise between modellers and those engaged with reconstructing the climate of the last 21 thousand years. Here, we present the design of a coordinated Core simulation over the period 21–9 thousand years before present (ka) with time varying orbital forcing, greenhouse gases, ice sheets, and other geographical changes. A choice of two ice sheet reconstructions is given, but no ice sheet or iceberg meltwater should be prescribed in the Core simulation. Additional focussed simulations will also be coordinated on an ad-hoc basis by the working group, for example to investigate the effect of ice sheet and iceberg meltwater, and the uncertainty in other forcings. Some of these focussed simulations will focus on shorter durations around specific events to allow the more computationally expensive models to take part

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Overlooked Threats to Respondent Driven Sampling Estimators: Peer Recruitment Reality, Degree Measures, and Random Selection Assumption

    No full text
    © 2017 Springer Science+Business Media, LLC Intensive sociometric network data were collected from a typical respondent driven sample (RDS) of 528 people who inject drugs residing in Hartford, Connecticut in 2012–2013. This rich dataset enabled us to analyze a large number of unobserved network nodes and ties for the purpose of assessing common assumptions underlying RDS estimators. Results show that several assumptions central to RDS estimators, such as random selection, enrollment probability proportional to degree, and recruitment occurring over recruiter’s network ties, were violated. These problems stem from an overly simplistic conceptualization of peer recruitment processes and dynamics. We found nearly half of participants were recruited via coupon redistribution on the street. Non-uniform patterns occurred in multiple recruitment stages related to both recruiter behavior (choosing and reaching alters, passing coupons, etc.) and recruit behavior (accepting/rejecting coupons, failing to enter study, passing coupons to others). Some factors associated with these patterns were also associated with HIV risk
    corecore