564 research outputs found
(Re)constructing Dimensions
Compactifying a higher-dimensional theory defined in R^{1,3+n} on an
n-dimensional manifold {\cal M} results in a spectrum of four-dimensional
(bosonic) fields with masses m^2_i = \lambda_i, where - \lambda_i are the
eigenvalues of the Laplacian on the compact manifold. The question we address
in this paper is the inverse: given the masses of the Kaluza-Klein fields in
four dimensions, what can we say about the size and shape (i.e. the topology
and the metric) of the compact manifold? We present some examples of
isospectral manifolds (i.e., different manifolds which give rise to the same
Kaluza-Klein mass spectrum). Some of these examples are Ricci-flat, complex and
K\"{a}hler and so they are isospectral backgrounds for string theory. Utilizing
results from finite spectral geometry, we also discuss the accuracy of
reconstructing the properties of the compact manifold (e.g., its dimension,
volume, and curvature etc) from measuring the masses of only a finite number of
Kaluza-Klein modes.Comment: 23 pages, 3 figures, 2 references adde
Formulae for zero-temperature conductance through a region with interaction
The zero-temperature linear response conductance through an interacting
mesoscopic region attached to noninteracting leads is investigated. We present
a set of formulae expressing the conductance in terms of the ground-state
energy or persistent currents in an auxiliary system, namely a ring threaded by
a magnetic flux and containing the correlated electron region. We first derive
the conductance formulae for the noninteracting case and then give arguments
why the formalism is also correct in the interacting case if the ground state
of a system exhibits Fermi liquid properties. We prove that in such systems,
the ground-state energy is a universal function of the magnetic flux, where the
conductance is the only parameter. The method is tested by comparing its
predictions with exact results and results of other methods for problems such
as the transport through single and double quantum dots containing interacting
electrons. The comparisons show an excellent quantitative agreement.Comment: 18 pages, 18 figures; to appear in Phys. Rev.
Quantum phase transition in a two-channel-Kondo quantum dot device
We develop a theory of electron transport in a double quantum dot device
recently proposed for the observation of the two-channel Kondo effect. Our
theory provides a strategy for tuning the device to the non-Fermi-liquid fixed
point, which is a quantum critical point in the space of device parameters. We
explore the corresponding quantum phase transition, and make explicit
predictions for behavior of the differential conductance in the vicinity of the
quantum critical point
Group diversity and group identification:the moderating role of diversity beliefs
Research on diversity in teams and organizations has revealed ambiguous results regarding the effects of group composition on workgroup performance. The categorization—elaboration model (van Knippenberg et al., 2004) accounts for this variety and proposes two different underlying processes. On the one hand diversity may bring about intergroup bias which leads to less group identification, which in turn is followed by more conflict and decreased workgroup performance. On the other hand, the information processing approach proposes positive effects of diversity because of a more elaborate processing of information brought about by a wider pool and variety of perspectives in more diverse groups. We propose that the former process is contingent on individual team members' beliefs that diversity is good or bad for achieving the team's aims. We predict that the relationship between subjective diversity and identification is more positive in ethnically diverse project teams when group members hold beliefs that are pro-diversity. Results of two longitudinal studies involving postgraduate students working in project teams confirm this hypothesis. Analyses further reveal that group identification is positively related to students' desire to stay in their groups and to their information elaboration. Finally, we found evidence for the expected moderated mediation model with indirect effects of subjective diversity on elaboration and the desire to stay, mediated through group identification, moderated by diversity beliefs
Field-induced single-ion magnetic behaviour in a highly luminescent Er3+ complex
This work is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License
Low-mass pre--main-sequence stars in the Magellanic Clouds
[Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar
stars form in very large numbers. Most attractive places for catching low-mass
star formation in the act are young stellar clusters and associations, still
(half-)embedded in star-forming regions. The low-mass stars in such regions are
still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature
of these objects and the contamination of their samples by the evolved
populations of the Galactic disk impose demanding observational techniques for
the detection of complete numbers of PMS stars in the Milky Way. The Magellanic
Clouds, the companion galaxies to our own, demonstrate an exceptional star
formation activity. The low extinction and stellar field contamination in
star-forming regions of these galaxies imply a more efficient detection of
low-mass PMS stars than in the Milky Way, but their distance from us make the
application of special detection techniques unfeasible. Nonetheless, imaging
with the Hubble Space Telescope yield the discovery of solar and sub-solar PMS
stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of
such objects are identified as the low-mass stellar content of their
star-forming regions, changing completely our picture of young stellar systems
outside the Milky Way, and extending the extragalactic stellar IMF below the
persisting threshold of a few solar masses. This review presents the recent
developments in the investigation of PMS stars in the Magellanic Clouds, with
special focus on the limitations by single-epoch photometry that can only be
circumvented by the detailed study of the observable behavior of these stars in
the color-magnitude diagram. The achieved characterization of the low-mass PMS
stars in the Magellanic Clouds allowed thus a more comprehensive understanding
of the star formation process in our neighboring galaxies.Comment: Review paper, 26 pages (in LaTeX style for Springer journals), 4
figures. Accepted for publication in Space Science Review
Validation of standard and alternative satellite ocean-color chlorophyll products off Western Iberia
Chlorophyll a concentration (Chl) product validation off theWestern Iberian coast is here undertaken by directly
comparing remote sensing data with in situ surface reference values. Both standard and recently developed
alternative algorithms are considered for match-up data analysis. The investigated standard products are those
produced by the MERIS (algal 1 and algal 2) and MODIS (OC3M) algorithms. The alternative data products include
those generatedwithin the CoastColour Project and Ocean Color Climate Change Initiative (OC-CCI) funded
by ESA, as well as a neural net model trained with field measurements collected in the Atlantic off Portugal
(MLPATLP). Statistical analyses showed that satellite Chl estimates tend to be larger than in situ reference values.
The study also revealed that a non-uniform Chl distribution in the water column can be a concurring factor to the
documented overestimation tendency when considering larger optical depth match-up stations. Among standard
remote sensing products, MODIS OC3M and MERIS algal 2 yield the best agreement with in situ data. The
performance of MLPATLP highlights the capability of regional solutions to further improve Chl retrieval by accounting
for environmental specificities. Results also demonstrate the relevance of oceanographic regions such
as the Nazaré area to evaluate how complex hydrodynamic conditions can influence the quality of Chl products.This studywas performed in the framework
of HabSpot FCT Project, PTDC/MAR/100348/2008 and European
Space Agency projects DUE CoastColour (ESRIN/AO/1-6141/09/l-EC)
and Climate Change Iniciative — Ocean Color (AO-1/6207/09/I-LG).
The work has been also partially supported by the European Space
Agency within the framework of the MERIS Validation Activities under
contract n. 12595/09/I-OL, and sampling activities benefited from
European projects HERMES (GOCE-CT-2005-511234) and Hermione
(EC contract 226354) support. We would like to thank NASA OBPG for
the MODIS data and ESA Project AOPT-2423 for providing MERIS full
resolution images. Ana C. Brito was funded
by a Portuguese Post-doc grant from FCT (BPD/63017/2009) and by the
Investigador FCT Program (IF/00331/2013). Davide D'Alimonte was
funded by Investigador FCT Program (IF/00541/2013).info:eu-repo/semantics/publishedVersio
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …