3,241 research outputs found

    Modeling Reveals the Dependence of Hippocampal Neurogenesis Radiosensitivity on Age and Strain of Rats

    Get PDF
    Cognitive dysfunction following radiation treatment for brain cancers in both children and adults have been correlated to impairment of neurogenesis in the hippocampal dentate gyrus. Various species and strains of rodent models have been used to study radiation-induced changes in neurogenesis and these investigations have utilized only a limited number of doses, dose-fractions, age and time after exposures conditions. In this paper, we have extended our previous mathematical model of radiation-induced hippocampal neurogenesis impairment of C57BL/6 mice to delineate the time, age, and dose dependent alterations in neurogenesis of a diverse strain of rats. To the best of our knowledge, this is the first predictive mathematical model to be published about hippocampal neurogenesis impairment for a variety of rat strains after acute or fractionated exposures to low linear energy transfer (low LET) radiation, such as X-rays and γ-rays, which are conventionally used in cancer radiation therapy. We considered four compartments to model hippocampal neurogenesis and its impairment following radiation exposures. Compartments include: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN), and (4) glioblasts (GB). Additional consideration of dose and time after irradiation dependence of microglial activation and a possible shift of NSC proliferation from neurogenesis to gliogenesis at higher doses is established. Using a system of non-linear ordinary differential equations (ODEs), characterization of rat strain and age-related dynamics of hippocampal neurogenesis for unirradiated and irradiated conditions is developed. The model is augmented with the description of feedback regulation on early and late neuronal proliferation following radiation exposure. Predictions for dose-fraction regimes compared to acute radiation exposures, along with the dependence of neurogenesis sensitivity to radiation on age and strain of rats are discussed. A major result of this work is predictions of the rat strain and age dependent differences in radiation sensitivity and sub-lethal damage repair that can be used for predictions for arbitrary dose and dose-fractionation schedules

    Human exposure in low Earth orbit

    Get PDF
    Human exposure to trapped electrons and protons in low Earth orbit (LEO) is evaluated on a basis of a simple approximation of the human geometry for spherical shell shields of varying thickness. A data base is presented that may be used to make preliminary assessment of the impact of radiation exposure constraints on human performance. Detailed shielding studies should be performed before final design considerations. A sample impact assessment is discussed on the basis of presently accepted allowable exposure limits. A brief discussion is given on the anticipated impact of an ongoing reassessment of allowable exposure limits

    Cellular repair/misrepair track model

    Get PDF
    A repair/misrepair cell kinetics model is superimposed onto the track structure model of Katz to provide for a repair mechanism. The model is tested on the repair-dependent data of Yang et al. and provides an adequate description of that data. The misrepair rate determines the maximum relative biological effectiveness (RBE), but similar results could arise from indirect X-ray lethality not include in the present model

    Nitric Oxide Is Involved in Heavy Ion-Induced Non-Targeted Effects in Human Fibroblasts

    Get PDF
    Previously, we investigated the dose response for chromosomal aberration (CA) for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) particles, and showed that the dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Our results suggested that the simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. Nitric oxide (NO) has been reported as a candidate for intercellular signaling for NTE in many studies. In order to estimate the contribution of NTE components in induced CA, we measured CA with and without an NO scavenger in normal skin fibroblasts cells after exposure to 600 MeV/u and 1 GeV/u 56Fe ions, less than one direct particle traversal per cell nucleus. Yields of CA were significantly lower in fibroblasts exposed to the NO scavenger compared to controls, suggesting involvement of NO in cell signaling for induction of CA. Media transferred from irradiated cells induced CA in non-irradiated cells, and this effect was abrogated with NO scavengers. Our results strongly support the importance of NTE contributions in the formation of CA at low-particle fluence in fibroblasts. View Full-Tex

    Radiation Risk Projections for Space Travel

    Get PDF
    Space travelers are exposed to solar and galactic cosmic rays comprised of protons and heavy ions moving with velocities close to the speed of light. Cosmic ray heavy ions are known to produce more severe types of biomolecular damage in comparison to terrestrial forms of radiation, however the relationship between such damage and disease has not been fully elucidated. On Earth, we are protected from cosmic rays by atmospheric and magnetic shielding, and only the remnants of cosmic rays in the form of ground level muons and other secondary radiations are present. Because human epidemiology data is lacking for cosmic rays, risk projection must rely on theoretical understanding and data from experimental models exposed to space radiation using charged particle accelerators to simulate space radiation. Although the risks of cancer and other late effects from cosmic rays are currently believed to present a severe challenge to space travel, this challenge is centered on our lack of confidence in risk projections methodologies. We review biophysics and radiobiology data on the effects of the cosmic ray heavy ions, and the current methods used to project radiation risks . Cancer risk projections are described as a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Risk projections for space travel are described using Monte-Carlo sampling from subjective error di stributions that represent the lack of knowledge in each factor that contributes to the projection model in order to quantify the overall uncertainty in risk projections. This analysis is applied to space mi ssion scenarios including lunar colony, deep space outpost, and a Mars mission. Results suggest that the number of days in space where cancer mortality risks can be assured at a 95% confidence level to be below the maximum acceptable risk for radi ation workers on Earth or the International Space Station is only on the order of 100-200 days. Approaches to reduce these unceI1ainties and mitigate risks are described

    Pathways of analysis on costume in Portuguese ethnofiction films

    Get PDF
    This article explores the theme of  documentary and fiction in the ethnofiction Portuguese cinema, with the costumes in the middle of this binomial as a phenomenon that explains it as a likelihood of the sequences and as a tool to create a simulation of the reality. We treat the term ethnofiction as it would be a cinematographic genre and we choose, as an example to analyse, 3 Trilogies from the Portuguese cinema. Also we treat the costumes according to the new concept about the clothed body that come from Fashion Theory. To analyse films costumes by the genre helps to create of a first definition of this kind of clothing and to understand its importance inside a filmic action. The theoretical parts about Fashion Theory and about the ethnofiction concept will be applied to the chosen films, trying to extend the knowledge through the introduction of others authors who also work about the two themes, to unify them, the clothed body and the ethnofiction, in the one of cinematographic costumes

    Teachers’ Perception of Motivational Strategies in the Language Classroom

    Get PDF
    Motivation can determine success or failure in second language learning process, however there is a limited number of published investigations dedicated to motivational strategies in a European context. The purpose of the present study is to replicate Cheng’s and Dörnyei’s (2007) research to test the validity of their findings in a different cultural milieu. 101 foreign language (FL) and second language (L2) teachers were asked to rate a list of 47 motivational strategies according based on the degree of importance they perceived. In addition, they were also invited to specify how they acquainted with each strategy. The results of the study suggest that, even though the use of motivational strategies is decidedly context-dependent, the prevailing importance of some strategies might be cross-cultural. In particular, strategies related to classroom climate could also be considered as preconditions to employ further strategies. The highest-rated strategies are also indicated as acquired mostly through experience, which highlights the far too little attention that motivational strategies have so far received in education programmes for the formation of language teachers

    Mine-action Activities in Western Sahara

    Get PDF
    Since 2007, the United Nations Mine Action Service has been implementing mine-action activities in Western Sahara. Although the parties to the conflict generally abide by a 1991 ceasefire, the expansive territory remains contaminated by an unknown quantity of mines and explosive remnants of war. The Mine Action Coordination Centre has provided technical coordination and quality assurance and plans to expand its mine-action operations

    AQuoSA - adaptive quality of service architecture

    Get PDF
    This paper presents an architecture for quality of service (QoS) control of time-sensitive applications in multi-programmed embedded systems. In such systems, tasks must receive appropriate timeliness guarantees from the operating system independently from one another; otherwise, the QoS experienced by the users may decrease. Moreover, fluctuations in time of the workloads make a static partitioning of the central processing unit (CPU) that is neither appropriate nor convenient, whereas an adaptive allocation based on an on-line monitoring of the application behaviour leads to an optimum design. By combining a resource reservation scheduler and a feedback-based mechanism, we allow applications to meet their QoS requirements with the minimum possible impact on CPU occupation. We implemented the framework in AQuoSA (Adaptive Quality of Service Architecture (AQuoSA). http://aquosa.sourceforge.net), a software architecture that runs on top of the Linux kernel. We provide extensive experimental validation of our results and offer an evaluation of the introduced overhead, which is perfectly sustainable in the class of addressed applications

    Uncertainty Analysis in Space Radiation Protection

    Get PDF
    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions
    • …
    corecore