43 research outputs found

    Protection against Pseudomonas aeruginosa lung infection in mice by recombinant OprF-pulsed dendritic cell immunization

    Get PDF
    BACKGROUND: The Pseudomonas aeruginosa major constitutive outer membrane porin protein F (OprF) has been shown to be a protective antigen and was previously used to activate an immunological response in a mouse model of lung pneumonia. The purpose of our study was to demonstrate the ability of mouse dendritic cells pulsed with purified or recombinant OprF to protect mice against P. aeruginosa infection and inflammation.Both native (n-OprF), isolated and purified from PAO1 bacterial strain, and recombinant (histidin-conjugated) OprF (His-OprF), obtained by cloning of the oprF gene into the pET28a expression vector, were used to stimulate dendritic cells in vitro before adoptive transfer into prospective recipient mice with P. aeruginosa pulmonary infection. RESULTS: Similar to n-OprF, His-OprF activated dendritic cells in vitro, inducing the costimulatory molecule expression as well as cytokine production. Upon adoptive transfer in vivo, porin-pulsed dendritic cells (DCs) induced Th1-mediated resistance to infection and associated inflammatory pathology caused by either the PAO1 strain or a clinically-isolated mucoid strain. CONCLUSIONS: This study highlights the pivotal contribution of DCs to vaccine-induced protection against P. aeruginosa infection and associated inflammation

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    Genetically-Determined Hyperfunction of the S100B/RAGE Axis Is a Risk Factor for Aspergillosis in Stem Cell Transplant Recipients

    Get PDF
    Invasive aspergillosis (IA) is a major threat to the successful outcome of hematopoietic stem cell transplantation (HSCT), although individual risk varies considerably. Recent evidence has established a pivotal role for a danger sensing mechanism implicating the S100B/receptor for advanced glycation end products (RAGE) axis in antifungal immunity. The association of selected genetic variants in the S100B/RAGE axis with susceptibility to IA was investigated in 223 consecutive patients undergoing HSCT. Furthermore, studies addressing the functional consequences of these variants were performed. Susceptibility to IA was significantly associated with two distinct polymorphisms in RAGE (-374T/A) and S100B (+427C/T) genes, the relative contribution of each depended on their presence in both transplantation counterparts [patient SNPRAGE, adjusted hazard ratio (HR), 1.97; P = 0.042 and donor SNPRAGE, HR, 2.03; P = 0.047] or in donors (SNPS100B, HR, 3.15; P = 7.8e-4) only, respectively. Functional assays demonstrated a gain-of-function phenotype of both variants, as shown by the enhanced expression of inflammatory cytokines in RAGE polymorphic cells and increased S100B secretion in vitro and in vivo in the presence of the S100B polymorphism. These findings point to a relevant role of the danger sensing signaling in human antifungal immunity and highlight a possible contribution of a genetically-determined hyperfunction of the S100B/RAGE axis to susceptibility to IA in the HSCT setting

    AGILE detection of extreme γ -ray activity from the blazar PKS 1510-089 during March 2009: Multifrequency analysis

    Get PDF
    We report on the extreme gamma-ray activity from the FSRQ PKS 1510-089 observed by AGILE in March 2009. In the same period a radio-to-optical monitoring of the source was provided by the GASP-WEBT and REM. Moreover, several Swift ToO observations were triggered, adding important information on the source behaviour from optical/UV to hard X-rays. We paid particular attention to the calibration of the Swift/UVOT data to make it suitable to the blazars spectra. Simultaneous observations from radio to gamma rays allowed us to study in detail the correlation among the emission variability at different frequencies and to investigate the mechanisms at work. In the period 9-30 March 2009, AGILE detected an average gamma-ray flux of (311+/-21)x10^-8 ph cm^-2 s^-1 for E>100 MeV, and a peak level of (702+/-131)x10^-8 ph cm^-2 s^-1 on daily integration. The gamma-ray activity occurred during a period of increasing activity from near-IR to UV, with a flaring episode detected on 26-27 March 2009, suggesting that a single mechanism is responsible for the flux enhancement observed from near-IR to UV. By contrast, Swift/XRT observations seem to show no clear correlation of the X-ray fluxes with the optical and gamma-ray ones. However, the X-ray observations show a harder photon index (1.3-1.6) with respect to most FSRQs and a hint of harder-when-brighter behaviour, indicating the possible presence of a second emission component at soft X-ray energies. Moreover, the broad band spectrum from radio-to-UV confirmed the evidence of thermal features in the optical/UV spectrum of PKS 1510-089 also during high gamma-ray state. On the other hand, during 25-26 March 2009 a flat spectrum in the optical/UV energy band was observed, suggesting an important contribution of the synchrotron emission in this part of the spectrum during the brightest gamma-ray flare, therefore a significant shift of the synchrotron peak

    Multiwavelength observations of 3C 454.3. III. Eighteen months of agile monitoring of the "crazy diamond"

    Get PDF
    We report on 18 months of multiwavelength observations of the blazar 3C 454.3 (Crazy Diamond) carried out in the period 2007 July-2009 January. In particular, we show the results of the AGILE campaigns which took place on 2008 May-June, 2008 July-August, and 2008 October-2009 January. During the 2008 May-2009 January period, the source average flux was highly variable, with a clear fading trend toward the end of the period, from an average γ-ray flux F E>100 MeV ≳ 200 × 10-8photonscm -2s-1 in 2008 May-June, to F E>100 MeV 80 × 10-8photonscm-2s-1 in 2008 October-2009 January. The average γ-ray spectrum between 100 MeV and 1 GeV can be fit by a simple power law, showing a moderate softening (from ΓGRID ∼ 2.0 to ΓGRID ∼ 2.2) toward the end of the observing campaign. Only 3σ upper limits can be derived in the 20-60 keV energy band with Super-AGILE, because the source was considerably off-axis during the whole time period. In 2007 July-August and 2008 May-June, 3C 454.3 was monitored by Rossi X-ray Timing Explorer (RXTE). The RXTE/Proportional Counter Array (PCA) light curve in the 3-20 keV energy band shows variability correlated with the γ-ray one. The RXTE/PCA average flux during the two time periods is F 3-20 keV = 8.4 × 10-11ergcm-2s -1, and F 3-20 keV = 4.5 × 10 -11ergcm-2s-1, respectively, while the spectrum (a power law with photon index ΓPCA = 1.65 0.02) does not show any significant variability. Consistent results are obtained with the analysis of the RXTE/High-Energy X-Ray Timing Experiment quasi-simultaneous data. We also carried out simultaneous Swift observations during all AGILE campaigns. Swift/XRT detected 3C 454.3 with an observed flux in the 2-10 keV energy band in the range (0.9-7.5) × 10-11ergcm-2s-1 and a photon index in the range ΓXRT = 1.33-2.04. In the 15-150 keV energy band, when detected, the source has an average flux of about 5mCrab. GASP-WEBT monitored 3C 454.3 during the whole 2007-2008 period in the radio, millimeter, near-IR, and optical bands. The observations show an extremely variable behavior at all frequencies, with flux peaks almost simultaneous with those at higher energies. A correlation analysis between the optical and the γ-ray fluxes shows that the γ-optical correlation occurs with a time lag of τ = -0.4+0.6-0.8 days, consistent with previous findings for this source. An analysis of 15 GHz and 43 GHz VLBI core radio flux observations in the period 2007 July-2009 February shows an increasing trend of the core radio flux, anti-correlated with the higher frequency data, allowing us to derive the value of the source magnetic field. Finally, the modeling of the broadband spectral energy distributions for the still unpublished data, and the behavior of the long-term light curves in different energy bands, allow us to compare the jet properties during different emission states, and to study the geometrical properties of the jet on a time-span longer than one year. © 2010. The American Astronomical Society. All rights reserved

    Strain Dependent Variation of Immune Responses to A. fumigatus: Definition of Pathogenic Species

    Get PDF
    For over a century microbiologists and immunologist have categorized microorganisms as pathogenic or non-pathogenic species or genera. This definition, clearly relevant at the strain and species level for most bacteria, where differences in virulence between strains of a particular species are well known, has never been probed at the strain level in fungal species. Here, we tested the immune reactivity and the pathogenic potential of a collection of strains from Aspergillus spp, a fungus that is generally considered pathogenic in immuno-compromised hosts. Our results show a wide strain-dependent variation of the immune response elicited indicating that different isolates possess diverse virulence and infectivity. Thus, the definition of markers of inflammation or pathogenicity cannot be generalized. The profound understanding of the molecular mechanisms subtending the different immune responses will result solely from the comparative study of strains with extremely diverse properties

    Valutazione dell’antibiotico-resistenza nell’acne

    No full text
    Acne is a multifactorial disease whose clinical features include infiammatory and non-infiammatory lesions. The aim of this study is to define possible guidelines for the treatment of this disease, taking into account the problems caused by antibiotic resistance and the side effect of antibiotics. From april 2000 to december 2002, 841 skin swab have been performed to detect the Propionbacteria, the agents more commonly related to the occurrence of acne. The results showed a correlation between low therapeutic response and antibiotic resistance, mainly concerning erytromycin (412/841-52.2%). Further investigations should be carried out in the near future, to clarify and understand the clinical effects of the resistant strain, and to overcome the lack of efficacy of the current antibiotic therapies

    Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and Foxp3+Foxp3^+ regulatory T cells in humans and mice

    Get PDF
    Unlike induced Foxp3+Foxp3^+ regulatory T cells (Foxp3+Foxp3^+ iTregiT_{reg}) that have been shown to play an essential role in the development of protective immunity to the ubiquitous mold Aspergillus fumigatus, type-(1)-regulatory T cells (Tr1) cells have, thus far, not been implicated in this process. Here, we evaluated the role of Tr1 cells specific for an epitope derived from the cell wall glucanase Crf-1 of A. fumigatus (Crf-1/p41) in antifungal immunity. We identified Crf-1/p41-specific latent-associated peptide+peptide^+ Tr1 cells in healthy humans and mice after vaccination with Crf-1/p41+zymosan. These cells produced high amounts of interleukin (IL)-10 and suppressed the expansion of antigen-specific T cells in vitro and in vivo. In mice, in vivo differentiation of Tr1 cells was dependent on the presence of the aryl hydrocarbon receptor, c-Maf and IL-27. Moreover, in comparison to Tr1 cells, Foxp3+Foxp3^+ iTregiT_{reg} that recognize the same epitope were induced in an interferon gamma-type inflammatory environment and more potently suppressed innate immune cell activities. Overall, our data show that Tr1 cells are involved in the maintenance of antifungal immune homeostasis, and most likely play a distinct, yet complementary, role compared with Foxp3+Foxp3^+ iTregiT_{reg}
    corecore