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Distinct and complementary roles for Aspergillus
fumigatus-specific Tr1 and Foxp3þ regulatory T cells
in humans and mice

Tanja Bedke1,4, Rossana G Iannitti2,4, Antonella De Luca2, Gloria Giovannini2, Francesca Fallarino2,
Carsten Berges1, Jean-Paul Latgé3, Hermann Einsele1, Luigina Romani2,5 and Max S Topp1,5

Unlike induced Foxp3þ regulatory T cells (Foxp3þ iTreg) that have been shown to play an essential role in the development of

protective immunity to the ubiquitous mold Aspergillus fumigatus, type-(1)-regulatory T cells (Tr1) cells have, thus far, not been

implicated in this process. Here, we evaluated the role of Tr1 cells specific for an epitope derived from the cell wall glucanase

Crf-1 of A. fumigatus (Crf-1/p41) in antifungal immunity. We identified Crf-1/p41-specific latent-associated peptideþ Tr1 cells

in healthy humans and mice after vaccination with Crf-1/p41þ zymosan. These cells produced high amounts of interleukin

(IL)-10 and suppressed the expansion of antigen-specific T cells in vitro and in vivo. In mice, in vivo differentiation of Tr1 cells

was dependent on the presence of the aryl hydrocarbon receptor, c-Maf and IL-27. Moreover, in comparison to Tr1 cells,

Foxp3þ iTreg that recognize the same epitope were induced in an interferon gamma-type inflammatory environment and more

potently suppressed innate immune cell activities. Overall, our data show that Tr1 cells are involved in the maintenance of

antifungal immune homeostasis, and most likely play a distinct, yet complementary, role compared with Foxp3þ iTreg.
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Regulatory T (Treg) cells have a key role for the maintenance of
immune homeostasis, prevention of autoimmunity and protection
against infections.1 Besides thymus-derived naturally occurring
Foxp3þ nTreg, two major subsets of induced Treg cells have been
identified: Foxp3þ regulatory T cells (Foxp3þ iTreg) and Foxp3�

type-(1)-regulatory T (Tr1) cells that differ in their mode of
induction, phenotype and cytokine expression but share the overall
feature to suppress immune responses.2 Foxp3þ iTreg differentiate in
the presence of sub-immunogenic doses of antigen and transforming
growth factor-b (TGF-b) in vitro and in vivo,3,4 produce high
amounts of interleukin (IL)-10 and TGF-b, and protect from
chronic immunopathology in response to pathogens such as
Leishmania major, hepatitis C virus or HIV.5–7 Tr1 cells, on the
other hand, are induced through the coordinate activation of the
transcription factor c-Maf by IL-27 and the aryl hydrocarbon receptor
(Ahr).8–13 Tr1 cells express latent-associated peptide (LAP) that binds
TGF-b, produce high amounts of IL-10 relative to interferon gamma
(IFN-g) but no IL-410,14,15 and are presumed to protect from T-helper
type-1(Th1)/Th17-mediated autoimmune disease in mice16 and
prevent reactions to common allergens including house dust
mites17,18 and bee venom19 in humans.

Aspergillus fumigatus is an ubiquitous mold that can cause distinct
modes of pathology: invasive aspergillosis (IA) and allergic
bronchopulmonary aspergillosis (ABPA) in clinical situations such
as neutropenia, immune suppression and chronic obstructive lung
disease. In these cases, impaired lung immunity and subsequent
fungal infections are accompanied with insufficient Th1 (IA)20,21 and
overwhelming Th2 (ABPA) responses, respectively.22,23 Foxp3þ nTreg

as well as Foxp3þ iTreg have been demonstrated to be essential for the
induction of protective tolerance to the fungus in mice24 and
humans25 by inhibition of overwhelming effector Th1/Th2 cell
responses at late stages of experimental IA24,26 and in ABPA
patients.25

A clinical challenge is the induction of balanced antifungal effector
T-cell responses together with Treg-cell responses to reduce the risk for
Th1/Th2-mediated immunopathology and to promote the develop-
ment of a durable protective immunity to A. fumigatus.23 This could
be accomplished by an adoptive transfer of antifungal T cells.
A. fumigatus-specific recombinant proteins derived from cell wall
components are proposed to be the most promising immunogenic
targets to induce protective antifungal immunity.27 We27 and
others28,29 have previously shown that epitopes derived from the
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cell wall glucanase Crf-1 induce protective antifungal Th1 responses,
and more specifically, we identified an immunodominant epitope
within the cell wall glucanase Crf-1 of A. fumigatus (Crf-1/p41,
thereafter referred to p41) that induces protective Th1 responses in
humans and Th1/Treg in mice.30 In the present study, we identified
p41-specific Tr1 cells in the peripheral blood of healthy humans and
in mice after vaccination with p41 and investigated their potential role
in antifungal immunity.

RESULTS

Identification of pre-existing p41þ Tr1 clones in healthy human
donors
We have recently shown that the p41-peptide induces protective
A. fumigatus-specific Th1 cell responses in humans and Th1/iTreg in a
mouse model of aspergillosis.27,30 This observation let us to
investigate whether p41 has the potential to induce antifungal Tr1
cells, another Treg-cell subset that can be induced by inhaled antigens
and regulates immune responses to these antigens. Due to the low
frequency of p41þ memory T cells in the peripheral blood of healthy
human donors (Supplementary Figure 1), we generated p41-specific
T-cell clones from in vitro expanded p41þCD154þ T cells. To ensure
analysis of different T-cell clones, we determined TcR-Vb signatures
of the clones (data not shown) and excluded identical clones
from subsequent analyses. Tr1 cells are characterized by their high
production of IL-10 with co-production of IFN-g in the absence of
IL-4.31 We therefore determined co-production of IL-10, IFN-g and
IL-4 by p41þ T-cell clones after p41-specific restimulation by
cytometric bead array. With respect to this cytokine signature,
p41þ T-cell clones were subdivided into a population with
high and low IL-10-to-IFN-g ratio (IL-10high and IL-10low)
(Supplementary Table S1, Figure 1a). In contrast, none of the clones
produced significant amounts of IL-4.

Next, we compared the expression of LAP and inducible T-cell
costimulator (ICOS) between IL-10high and IL-10low p41þ T-cell
clones, two molecules that are expressed on Tr1 cells. LAP was
specifically upregulated on p41þ T-cell clones with a high IL-10-to-
IFN-g ratio upon activation (Figure 1c). In contrast, ICOS expression
was upregulated on all p41þ T-cell clones after restimulation. In
addition, we detected transient upregulation of the Treg lineage-
specific transcription factor Foxp3, but not Helios,32,33 in activated
p41þ T-cell clones, irrespective of their cytokine production profile
(Figure 1b). However, transient Foxp3 in these clones was significantly
lower compared with CD4þCD25þCD127dim nTreg. Thus, these data
suggest that pre-existing IL-10-producing LAPþ p41þ Tr1 cells are
present in the memory CD4þ T-cell pool of healthy humans.

Human p41þ Tr1 clones exert a suppressive activity against CD4þ

T cells
We next addressed the question whether p41þ Tr1 clones are able to
suppress proliferation of autologous conventional CD4þ T cells
(Tconv) in in vitro coculture assays. p41þ Tr1 clones significantly
suppressed proliferation of CD4þCD25� Tconv (31±2%; Figure 2a).
This effect was specific for p41þ Tr1 clones as Tconv proliferation was
not suppressed but rather increased in the presence of p41þ Teff

clones, most likely referred to their high IL-2 production (data not
shown). Of note, p41þ Tr1 clones also significantly suppressed
in vitro expansion of p41-specific CD4þ T cells (51±5% suppres-
sion) in an antigen-specific manner (Figure 2b, upper panel and lower
left). This suppression was contact-independent, as expansion of
p41þ T cell was still reduced by 57±5% after separation from p41þ

Tr1 clones by a semi-permeable membrane (Figure 2b lower right).

Collectively, these data show that p41þ Tr1 clones are capable of
suppressing the proliferation of Tconv and expansion of p41þ T cells
in a contact-independent manner.

Human p41þ Tr1 clones are not artificially induced during in vitro
expansion
Tr1 cells can be induced under different polarizing conditions
in vitro.34 To exclude that CD154þ T-cell pre-selection or addition
of IL-7 and IL-15 during in vitro culture affect polarization of p41þ

Tr1 cells, we generated p41þ T-cell clones from peripheral blood
mononuclear cells (PBMCs) exclusively in the presence of IL-2.
Consistent with our previous data, p41þ Tr1 clones generated in
the absence of polarizing conditions exhibited a significantly increased
IL-10-to-IFN-g cytokine profile (Supplementary Figure 2A) without
producing considerable amounts of IL-4 (data not shown), suppressed
proliferation of Tconv by 36±1% (Supplementary Figure 2B) and
expansion of p41þ T cells by 46±5% (Supplementary Figure 2C).

Further evidence that p41þ Tr1 clones are not artificially induced
in vitro comes from analyses of cytomegalovirus (CMV)-specific
CD4þ T-cell clones. The analysis of memory CMVpp65-specific
CD4þ T-cell clones (donor 1) or, more restricted, CMVpp65283-297-
specific CD4þ T-cell clones (donor 2)35 demonstrated that these
clones could not be subdivided in terms of their IL-10-to-IFN-g
cytokine profile (Table 1). In fact, all clones produced high amounts
of IL-4. Furthermore, these clones did not differentially upregulate
LAP but exhibited a Foxp3 expression pattern comparable with p41þ

T-cell clones (Supplementary Figure 3A, B). Consequently, CMV-
specific T-cell clones failed to suppress in vitro proliferation of
autologous Tconv cells (Table 1). Overall, these data demonstrate that
p41þ Tr1 cells were not artificially induced as a consequence of
pre-selection or cytokine-mediated polarization in vitro but were
rather in vitro expanded from in vivo-induced p41þ Tr1 cells.

Intranasal vaccination with p41 and zymosan induces Tr1 cells in
mice
We next asked whether Tr1 cells can be induced in vivo by the
p41-peptide. To this end, we vaccinated mice with the p41-peptide
and zymosan or CpG-oligodeoxynucleotide (ODN), two adjuvants
that have shown to support IL-10 production by murine T cells
in vitro (data not shown). Animals that received anti-CD3
monoclonal antibody (mAb) intranasally served as positive control
for Tr1 cell induction.36,37 We comparatively analyzed lungs of control
anti-CD3-treated mice and of mice treated with p41þ zymosan or
p41þCpG-ODN for the presence of LAPþ, Foxp3þ and IL-10þ

cells by immunofluorescence staining. Similar to mice treated with
anti-CD3 mAb, mice that had received p41þ zymosan revealed the
presence of IL-10þ and LAPþ, but not Foxp3þ , cells in the lung
parenchyma (Figure 3a). In contrast, IL-10þ and Foxp3þ , but not
LAPþ, cells were present in the lungs of mice treated with p41þ
CpG-ODN. Neither LAPþ nor Foxp3þ cells were induced in the
lungs of mice treated with zymosanþ control C22 peptide. We also
used flow cytometric analysis to confirm the expansion of LAPþ cells
(both CD4þ and CD4�) in the lungs (Figure 3b) and thoracic lymph
nodes (TLN) (Figure 3c) of mice treated with p41þ zymosan or
control anti-CD3 mAb but not p41þCpG-ODN (Figures 4b and c).
LAPþ cells also expressed ICOS and cytotoxic T-lymphocyte-asso-
ciated antigen 4 (CTLA-4) (data not shown).

To further confirm whether the LAPþ IL-10þ phenotype correlates
with a Tr1-type function, we next analyzed their cytokine expression
pattern and suppressive capacity. LAPþ lung cells isolated from mice
treated with p41þ zymosan and anti-CD3 mAb stained positive for
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IL-10 but not IFN-g (Figure 4a), a finding confirmed by the ability of
T cells isolated from the lungs of these animals (and similarly from
TLN, data not shown) to secrete increased amounts of IL-10 but not
IFN-g upon anti-CD3 stimulation in vitro (Figure 4c). In addition,
IL-10-secreting cells, isolated from lungs of p41þ zymosan-treated
mice, suppressed proliferation of responder CD4þ T cells in a dose-
and IL-10-dependent manner as shown by titration of Tr1 cells and
addition of a neutralizing mAb, respectively (Figures 4b and d).
Neutralization of TGF-b had a minor effect on this suppressive
capacity. Since p41þ zymosan administered subcutaneously failed to
induce Tr1 cells in the lungs (data not shown), our data show that

LAPþ IL-10þ Tr1 cells are induced upon intranasal exposure to
fungal antigens in the presence of zymosan, whereas intranasal
administration of fungal antigensþCpG-ODN induced Foxp3þ

iTreg, as already reported.27,30

p41-induced Tr1 cells decrease inflammatory T cells in murine
aspergillosis
We next asked for the role Tr1 cells might have in the pathogenesis
of IA. To this purpose, mice, vaccinated as described above, were
subsequently intranasally infected with A. fumigatus conidia and
analyzed for their susceptibility to fungal infection in terms of fungal

Figure 1 Identification of human p41þCD4þ Tr1 cell clones in the peripheral blood of healthy human donors. (a) CD4þp41þ T-cell clones were

restimulated with p41-pulsed DC for 48 h prior analysis of IL-10 and IFN-g secretion from culture supernatants by Cytometric Bead Array. The diagram

summarizes the ratio of IL-10-to-IFN-g release±s.d. of p41þCD4þ T-cell clones (n¼9 per group; three different donors). (b) Flow cytometric analysis of

the Foxp3 and Helios expression in resting CD4þCD25þCD127dim nTreg and in one representative CD4þ T-cell clone with high (IL-10high) and low

(IL-10low) IL-10-to-IFN-g ratio (upper panel) and after stimulation with autologous p41-pulsed DC for 24 h (ratio 10:1, lower panel). The diagram

summarizes the percentage of Foxp3þexpression in resting and activated IL-10high and IL-10low p41þCD4þ T-cell clones±s.d. (n¼7 per group; three

different donors). (c) Histograms show expression of LAP and ICOS of one representative activated IL-10high and IL-10low p41þCD4þ T-cell clone (solid

lines) compared with isotype controls (dashed lines) and diagram summarizes percentage of LAP and ICOS expression±s.d. on resting and activated

p41þCD4þ T-cell clones, respectively (n¼7 per group; three different donors).
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growth and inflammatory pathology. Vaccination of mice with p41þ
zymosan did not significantly affect fungal growth in the lung
(Figure 5a) but decreased cellular infiltrates (Figure 5b) and neu-
trophils (Figure 5c) in the lung and bronchoalveolar lavage (BAL)
(Figure 5b insets and numbers). Consistent with previous observa-
tions,27,30 under conditions of Foxp3þ iTreg induction by p41þCpG-
ODN treatment, both fungal burden and inflammation were
decreased.

Quantification of the production of important effector cytokines in
antifungal immune resistance23 by lung infiltration cells revealed
significantly increased IL-10 but decreased IFN-g levels under
conditions of Tr1 cell induction by p41þ zymosan (Figure 5d),
whereas tumor necrosis factor-alpha and IL-17A production was
not affected in these mice. In contrast, significantly increased levels of
IFN-g accompanied by decreased levels of IL-17A and tumor necrosis
factor-alpha were observed in mice vaccinated with p41þCpG-ODN.
In addition, an increase in IL-27, a dendritic cell (DC)-derived
cytokine required for the differentiation of Tr1 cells in vivo,13 was
observed in p41þ zymosan but not p41þCpG-ODN-treated mice
(Figure 5d). These data suggest that the occurrence of Tr1 cells is
associated with increased IL-10 and IL-27 levels, but decreased IFN-g
levels in infection, while an induction of Foxp3þ iTreg is associated
with high levels of IL-10 and IFN-g and concomitant inhibition of
tumor necrosis factor-alpha and IL-17A.

Next, we analyzed Th lineage-specific transcription factors in
CD4þ T cells from TLN to receive further insight into T-cell function

Table 1 Functional characterization of cytomegalovirus-specific

CD4þ T-cell clones

Donor # Clone CMV

epitope

Cytokine production

(pgm�1)

% Tconv cell proliferation

in the presence of the

clone (Tconv:clone2:1)

IL-10 IL-4 IFN-g

1 6A5 pp65pool 43 484 1309 146

9F9 4 959 755 89

1F5 18 402 1259 115

9B10 25 590 1164 147

2 6B6 pp65283-297 222 626 876 88

2G12 212 1333 1509 119

10A6 841 994 974 86

Abbreviations: CMV, cytomegalovirus; IL, interleukin.
CMVpp65þ CD4þ T-cell clones were restimulated with peptide-pulsed DC (Donor 1: CMV
peptide pool; Donor 2: CMVpp65283-297) for 48h. Thereafter, production of the cytokines
IL-10, IL-4 and IFN-g was determined from culture supernatant by CBA. Proliferation of Tconv

in response to platebound anti-CD3 monoclonal antibody plus irradiated CD2� stimulator cells
was analyzed in the presence of the indicated clone by carboxyfluorescein diacetate,
succinimidyl ester (CFSE) dilution (Tconv without clone¼100% proliferation).

Figure 2 Human p41þ Tr1 cell clones suppress expansion of CD4þ T cells.

(a) T-cell clones were cocultured together with CFSE-labeled autologous

CD4þCD25� T cells (Tconv) (1:2 ratio) and irradiated p41-pulsed CD2-
depleted APC (1:2:4 (clone:Tconv:APC)) in round bottom plates, coated with

0.5mg ml�1 anti-CD3 mAb. After three days, CFSE dilution was determined

by flow cytometry. The histograms show CFSE dilution of Tconv in the

absence and presence of one representative Teff and Tr1 clone. Diagrams

summarize %±s.d. suppression of Tconv proliferation in the presence Tr1

and Teff clones (n¼9 per group; three different donors) at a 1:2:4 ratio

(clone:Tconv:APC). (b) CFSE-labeled PBMCs were cultured together with

CellVue-Claret-labeled p41-specific T-cell clones at 2:1 ratio. After 24 h of

culture and every second day, IL-2 were added to the culture. After seven

days, the T cells were restimulated with p41-pulsed autologous DC at a

ratio of 10:1 and cultured for additional six days in the presence of IL-7

and IL-15. Afterward, expansion of CFSEþCD4þp41þ T cells was analyzed

by flow cytometry using a p41-specific PE-labeled tetramer. Dotplot analysis

shows one experiment in the absence (left) and presence of a representative

Tr1 clone (middle) and Teff clone (right). Diagrams summarize %±s.d.

suppression of CD4þCFSEþp41þ T-cell expansion in contact-dependent

presence of Tr1 and Teff clones (left) (n¼6 per group; three different

donors) as well as in contact-independent cocultures in transwell systems
(right) (n¼5 per group; three different donors).
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Figure 3 p41 induces murine Tr1/Treg in vivo depending on adjuvant. Immunofluorescence staining of lungs (a) and flow cytometry of lungs (b) and TLN (c)

from C57BL/6 mice intranasally treated with anti-CD3, the p41-peptide or the control C22 peptide along with zymosan or CpG-ODN. Lungs were stained

with anti-LAP-PE, anti-IL-10-PE or anti-Foxp3 followed by PE secondary antibody and 4’,6-diamidino-2-phenylindole for nuclei for Tr1/Treg-cell assessment

at the end of each treatment. Representative images of two independent experiments were acquired with a �40 objective. Scale bars, 200mm. Total cells

were stimulated in vitro with anti-CD3þCD28 for 24 h before surface staining with anti-CD4-FITC (fluorescein), anti-CD25-PE and anti-LAP-PE. Numbers

refer to % positive cells.

Identification of fungus-specific Tr1 cells in humans and mice
T Bedke et al

663

Immunology and Cell Biology



Figure 4 Mouse Tr1 cells are IL-10þ IFN-g� and suppress T-cell proliferation. Mice were intranasally treated as decribed previously in Figure 3. (a) Total

lung cells were stimulated in vitro with anti-CD3þCD28 for 24h before surface stained with anti-LAP-PE and, once permeabilized, stained for intracellular

IL-10 or IFN-g. Numbers refer to % positive cells. (b) Suppression of proliferation of CD4þCD25–CFSE-labeled responder T cells by IL-10þ T cells

(1:1 ratio) from lungs of treated mice. Cells were anti-CD3þCD28 stimulated for 72h. The CFSE signal was analyzed by flow cytometry. The percentages

of proliferating cells (red) are shown. (c) Cytokine levels (pg ml�1, enzyme-linked immunosorbent assay) in the supernatants of total lung cells from naive

mice (untreated) or mice treated as above. Cells were stimulated in vitro with anti-CD3þCD28 for 24h. Data are mean±s.d. Po0.05, one-way analysis of

variance Bonferroni post-test. (d) Suppression of proliferation of CD4þCD25–CFSE-labeled responder T cells by purified T cells from lungs of treated mice.

Cells were anti-CD3þCD28 stimulated for 72h. Anti-IL-10 or anti-TGF-b neutralizing antibodies (50mg ml�1) were added to cocultures at 1:1 ratio.

Suppression (%, as indicated) was expressed as the relative inhibition of the percentage of CFSE cells (100� (1% CFSElowCD4þCD25� T cells in

coculture/% CFSElow CD4þCD25� T cells alone)) for CFSE-based measurement of proliferation. Data are mean values±s.d.. P-value derived from two-way

analysis of variance test, Po0.01. Ct, isotype-matched antibody.
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after vaccination with p41. Expression of c-maf, a Tr1-specific
transcript,8,12 was specifically increased after treatment with
p41þ zymosan and anti-CD3 mAb (Figure 5e). As expected, Foxp3
transcripts were increased after p41þCpG-ODN treatment.
Of note, Th1-related Tbet and Th17-specific Rorc transcripts were
decreased after vaccination with p41þ zymosan but increased after
p41þCpG-ODN treatment. Together, these data demonstrate
differential expression of Th1/Th17-related transcription factors
under Tr1- or Foxp3þ iTreg-inducing condition, suggesting that these
cells differently control inflammatory Th1 and Th17 cell responses in
experimental aspergillosis.

Mouse Tr1 cells are activated through Ahr and require IL-10 to
exert their suppressive function
Studies in humans and mice show that differentiation of Tr1 cells
in vivo requires AhR11,36 in addition to IL-2713 but not IL-10.38

We therefore investigated Tr1 cell activation and function in Ahr–/–

and Il10–/– mice. Neither LAPþ nor IL-10þ cells could be induced in
the lungs of untreated Ahr–/– mice or after treatment with
p41þ zymosan (Figures 6a and b). In contrast, LAPþ cells were
present in Il10–/– mice (Figures 6c and d). In addition, we detected a
higher degree of lung inflammation in Ahr–/– and Il10–/– mice
(Figures 6e and f) that could not be controlled by treatment with
p41þ zymosan. The treatment did not modify fungal burden (data
not shown). To determine the role of IL-10 in the regulatory activity
of Tr1 cells and to define the potential of TGF-b16 to this activity,
mice were treated with p41þ zymosan together with neutralizing
IL-10 or TGF-b mAb at the time of infection. Neutralization of IL-10
and, to a lesser extent, TGF-b increased the lung inflammatory
pathology (Figure 6g). These data suggest that AhR rather than IL-10
is involved in the induction of Tr1 cells, whereas the suppressor
activity of these cells is mainly mediated by IL-10.

DISCUSSION

There is emerging evidence that Foxp3þ Treg are involved in the
regulation of antifungal immune responses. Animal and clinical
studies of IA and ABPA had shown that these cells suppress
overwhelming inflammatory Th1 and Th2 responses and support
the generation of long-term antifungal T-cell memory.24 However, it
remains unclear whether Tr1 cells, that control the maintenance of
immune homeostasis to inhaled allergens,25,39 might also be involved
in maintenance of a protective antifungal immunity. In the present
study, we identified for the first time A. fumigatus-specific Crf-1/
p41þ Tr1 cells in mice and humans and demonstrated that these cells
possess the overall features of Tr1 cells by the means of high IL-10
production, LAP expression in the absence of Foxp3 and the capacity
to suppress T-cell activation in vitro and in vivo.

We identified human p41-specific Tr1 cells within the memory
CD4þ T-cell pool of healthy donors after in vitro expansion under
distinct culture conditions. These cells showed the characteristics of
Tr1 cells in terms of their LAP expression, high IL-10 production in
the absence of significant amounts of IL-4,31 and their ability to
suppress in vitro proliferation of CD4þ T cells in an antigen-
independent as well as p41-dependent manner. On the other hand,
human p41þ memory Tr1 cells differed from previously described
primary-induced Tr1 cells with respect to their transient upregulation
of Foxp3 expression. However, our observation that all analyzed p41þ

T-cell clones as well as CMV-specific T-cell clones upregulated Foxp3
upon restimulation, irrespective of their differentiation state and,
more strikingly, CD4þCD25þCD127dim nTreg expressed higher
amounts of Foxp3, strongly suggests that this expression is related

to the memory state of the T-cell clones without affecting their
function.40

It has recently been shown that A. fumigatus-specific Foxp3þ

Heliosþ nTreg can be identified in healthy humans after enrichment
of CD137þ T cells activated by A. fumigatus lysates.41 Although we
cannot exclude that p41-specific Foxp3þHeliosþ Treg exist in the
peripheral blood of healthy humans, these cells were undetectable
under our in vitro culture conditions, indicating that p41-peptide
predominantly induces Tr1 cells in healthy humans. Therefore, these
data support our notion that p41þ Tr1 cells might have a crucial role
in maintenance of A. fumigatus-specific immune homeostasis.
However, it would be of interest to determine whether p41-specific
can be identified after distinct pre-selection strategies such as
CD137þ enrichment.

Besides the characterization of human p41þ Tr1 cells, our study
provided the opportunity to analyze the induction and function of
p41þ Tr1 in a mouse model of aspergillosis. Analysis of p41þ
zymosan-vaccinated mice revealed the induction of LAPþ IL-10þ

Tr1 cells in vivo, accompanied by an increase in IL-27 production by
lung-infiltrating cells and c-Maf expression in CD4þ T cells isolated
from TLN. As vaccination of Ahr–/– mice failed to induce LAPþ

IL-10þ Tr1 cells, our data suggest that p41þ Tr1 cell differentiation is
mediated via the activation of c-Maf by IL-27 in cooperation with
AhR, as previously reported.8–11,13

In summary, our data show that antifungal IL-10-producing LAPþ

Tr1 cells exist in the peripheral blood of healthy humans and can be
induced in mice via cooperative activation of c-Maf via IL-27 and
AhR. Direct comparison of p41þ Tr1 cells with Foxp3þ iTreg of the
same specificity showed that these Treg-cell subsets differ in their
mode of induction and, in part, in their suppressive function. Given
the ability of the p41-peptide to induce protective antifungal Tr1 cells
as well as Th1/Foxp3þ iTreg cells,30 we suggest that this peptide
provides a versatile tool to restore protective A. fumigatus-specific
immunity in clinical settings of invasive aspergillosis and ABPA.

METHODS

Peptides
The A. fumigatus-derived Crf-1/p41-peptide (FHTYTIDWTKDAVTW),

Crf-1/p22 peptide (TDFYFFFGKAEVVMK) andCMV-derived peptide

CMVpp65283-297 (KPGKISHIMLDVAFT) were purchased from ProImmune

(Oxford, UK). The CMVpp65 peptide pool was obtained from JPT (Berlin,

Germany).

Ethics statement
Human studies were performed after written informed consent of the study

participants, in accordance with the Declaration of Helsinki, and were

approved by the institutional review board of the University hospital Würzburg

(#214/12). Mouse experiments were performed according to the guidelines of

the European Convention for the Protection of Vertebrate Animals used for

Experimental and other Scientific Purposes (ETS No. 123) and the Italian

Approved Animal Welfare Assurance A–3143–01. Legislative decree 157/2008-B

regarding the animal license was obtained by the Italian Ministry of Health

lasting for 3 years (2011–2014). The protocol was approved by Perugia

University Ethics Committee. Infections were performed under avertin

anesthesia and all efforts were made to minimize suffering.

Human blood donors and cell isolation
Blood was obtained from healthy HLA-DRB01*04-typed donors after

informed consent. PBMCs were isolated by density gradient centrifugation

using Ficoll/Hypaque (Biochrom, Berlin, Germany). CD4þ T cells and CD2�

antigen-presenting cells (APCs) and monocytes were selected by magnetic

microbeads (Miltenyi Biotech, Bergisch Gladbach, Germany) according to the
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manufacturer’s instructions. Briefly, CD4þ T cells were enriched by depletion

of non-CD4þ T cells, CD2� APC were enriched by depletion of CD2þ cells

and monocytes were positive selected by enrichment of CD14þ cells.

Monocyte-derived DCs were generated as described previously.42

Generation of human p41-specific T-cell clones
p41-specific T cells were expanded from CD154þ p41-specific T cells as

described previously43 or from PBMCs activated by 5mg ml�1 p41 in the

presence of 5 U ml�1 IL-2 (Chiron; Tuttlingen, Germany). At day 7, cultures

were restimulated with p41-pulsed monocytes at 5:1 and expanded for

additional 7 days. p41þ T cells were purified using a HLA-DRB01*04

Phycoerythrin (PE)-labeled major histocompatibility class II tetramer

(Beckman Coulter, Marseille, France) and anti-PE MicroBeads (Miltenyi

Biotech). T-cell cloning was performed as described before.44

Flow cytometric characterization of T-cell clones
For phenotypic analysis, the following anti-human mAb were used: CD4

(Horizon V500, clone: RPA-T4), Foxp3 (AlexaFluo 647 or PE, 259D/C7; all BD

Pharmingen, San Diego, CA, USA), ICOS (PE-Cy7, ISA3; eBioscience,

San Diego, CA, USA), LAP (PE, TW4-2F8), and Helios (Pacific Blue, 22F6,

BioLegend, San Diego, CA, USA). For analysis of surface markers, cells were

incubated with mAbs at 4 1C for 20 min. For staining of intracellular molecules

fixation/permeabilization buffers (eBiosciences) were used. Cells were analyzed

by FACS-Canto II flow cytometer (BD Biosciences, Heidelberg, Germany) and

FlowJo software (Tree Star, Ashland, OR, USA). IFN-g and IL-10 production

by T-cell clones was determined from culture supernatants after 48 h of

restimulation with p41-pulsed DC by cytometric bead array according to the

manufacturer’s instructions (CBA, BD Biosciences). Quantification of cytokine

production was analyzed using FCAP Array v2.0 Software (SoftFlow, Pécs,

Hungary).

Suppression assays with human T-cell clones
Responder CD4þ T cells were labeled with 1mM carboxyfluorescein diacetate,

succinimidyl ester (CFSE) (Invitrogen, Darmstadt, Germany) for 10 min at

room temperature prior coculture with T-cell clones and p41-pulsed irradiated

CD2� cells (30 Gy) at a 2:1:4 ratio in 96-well round bottom plates coated with

1mg ml�1 anti-CD3 mAb as described previously.45 After 3 days, CFSE

dilution was analyzed by flow cytometry. For antigen-specific suppression,

PBMCs were labeled with CFSE and T-cell clones with CellVue-Claret

(Polysciences, Eppelheim, Germany) according to the manufacturer’s

instructions. CFSE-labeled PBMCs were cocultured with CellVue-Claret-

labeled T-cell clones at 3:1 in the presence of 5mg ml�1 p41-peptide and

5 U ml�1 IL-2. After 7 days, the cultures were restimulated with p41-pulsed

DC at 10:1 and expanded for additional 6 days in the presence of 10 ng ml�1

IL-7 and IL-15. For transwell experiments, PBMCs and T-cell clones were

separated by 0.4-mm membranes (Costar Corning Life Science, Lowell, MA,

USA). Expansion of CFSEþCD4þp41þ T cells was determined by flow

cytometry using the p41 tetramer.

Animals
Female C57BL/6 mice, 8–10-week old, were purchased from Charles River

(Calco, Italy). Homozygous Ahr–/– and Il10–/– mice on C57BL/6 background

were bred under specific pathogen-free conditions at the Animal Facility of

Perugia University, Perugia, Italy.

Infection and treatments
Mice were anesthetized by intraperitoneal injection of 2.5% avertin

(Sigma-Aldrich, St Louis, MO, USA) before the intranasal instillation of a

suspension of 2� 107 viable conidia from the A. fumigatus AF293 strain. Mice

were monitored for fungal growth (log10 colony-forming unit per lung,

mean±s.d.), histopathology (periodic acid-Schiff) and lung immunofluores-

cence (see below). BAL fluid was collected by cannulating the trachea and

washing the airways with 3 ml of phosphate-buffered saline. Total and

differential cell counts were done by staining BAL smears with May-

GrünwaldGiemsa reagents (Sigma-Aldrich) before analysis. At least 200 cells

per cytospin preparation were counted and the absolute number of each cell

type was calculated. Histology sections and cytospin preparations were

observed using a BX51 microscope (Olympus, Milan, Italy) and images were

captured using a high-resolution DP71 camera (Olympus). Mice were treated

with a total of 60mg of anti-IL-10 (JES5.2A5) or TGF-b (1D11) mAbs

(Bioceros BV, Utrecht, The Netherlands) at the time of infection. Control mice

received either a rat IgG1 mAb isotype or a murine IgG1 mAb isotype with

similar effects. Mice received intranasally 0.5mg CD3-specific antibody (clone

145-2C11, Bioceros BV, Utrecht, Netherlands) for five consecutive days, 20mg

of p41 or C22 control peptide along with 10mg CpG ODNODN 1862)

(Invitrogen, Srl, Milan, Italy) or zymosan (Sigma-Aldrich) administered at 14,

7, 3 days before the infection. Assays were done three days after the infection or

a day after the end of each treatment.

Immunofluorescence of mouse sections
Lung sections were deparaffinized and stained with PE-LAP (TGF-b1,

BioLegend, Campoverde Srl, Milan, Italy), PE-IL-10 (eBioscience) and

polyclonal Foxp3 (abcam, Cambridge, UK) followed by goat anti-rabbit PE

secondary antibody (BioLegend).

Preparation of mouse lung and thoracic lymph node cells
For isolation of lung and TLN cells, lungs and TLN were aseptically removed

and cut into small pieces in cold medium. The dissected tissue was then

incubated in Hank’s balances salt solution without Ca and Mg (Lonza Verviers

Belgium) medium containing collagenase XI (0.7 mg ml�1; Sigma-Aldrich)

and type IV bovine pancreatic DNase (30mg ml�1; Sigma-Aldrich) for

30–45 min at 37 1C. The action of the enzymes was stopped by adding 10 ml

of medium, and digested lungs and TLNs were further disrupted by gently

pushing the tissue through a nylon screen. The single cell suspension was then

washed, centrifuged at 200 g and resuspended in phosphate-buffered saline

containing 0.5% fetal bovine serum. CD4þ T cells (both CD25þ and CD25�)

were isolated with the CD4 MicroBeads (Miltenyi Biotech). Naı̈ve CD4þ

CD25� T cells were isolated from lung by magnetic sorting with the CD4þ

CD25þ Regulatory T Cell Isolation Kit, (Miltenyi Biotech). IL-10þ cells were

isolated with the Mouse IL-10 Secretion Assay Cell Enrichment and Detection

Kit (Miltenyi Biotech) from non-adherent lung cells cultured on anti-CD3-

coated plates (clone 145-2C11; BD PharMingen) in the presence of 2mg ml�1

soluble anti-CD28 mAb (clone 37.51; BD PharMingen) overnight at 37 1C.

Coculture experiments with mouse Tr1 and CFSE labeling
Naı̈ve CD4þCD25� cells were labeled with CFSE (10 mM in dimethylsulf-

oxide; Molecular Probes, Eugene, OR, USA) and stimulated in 96-well flat

bottom plates (Corning Incorporated, New York, NY, USA) with anti-CD3þ /

CD28þ at 1� 105 cells per well in the presence of IL-10þ cells, at 1:1

responder:Tr1 ratio or in the presence of purified T cells at 1:1 or 10:1 ratios.

Anti-IL-10 or anti-TGF-b neutralizing antibodies (50mg ml�1) were added to

Figure 5 p41-induced murine Tr1 cells decrease inflammatory T cells in murine aspergillosis. C57BL/6 mice were treated as decribed previously in Figure 3

and infected intranasally with live Aspergillus conidia (six mice per group). Mice were assessed for (a) lung fungal growth (log10 colony-forming unit per
organ±s.d.), (b) lung histopathology (periodic acid-Schiff staining) and BAL cellular morphometry (indicated as % of mononuclear (Mø) or

polymorphonuclear (PMN) cells in the inset (May–GrünwaldGiemsa staining)). Representative images of two independent experiments were acquired with a

�40 objective. Scale bars, 200mm. (c) Mpo expression (reverse transcriptase-PCR) on total lung cells. (d) Levels of cytokines (pg ml�1) by specific

enzyme-linked immunosorbent assays (mean values±s.d., n¼3) in lung homogenates. (e) Relative expression (mRNA-fold increase) of transcription factor

genes (by reverse transcriptase-PCR) on purified CD4þ T cells from TLN. Assays were done at three days post-infection. P-value was determined by one-way

analysis of variance Bonferroni post-test (n¼3).
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Figure 6 Mouse Tr1 cells are activated through Ahr and require IL-10 and, partly, TGF-b to suppress. Ahr�/� or Il10�/� mice were treated and infected as

decribed previously in Figure 5 and assessed for lung immunofluorescence with anti-LAP-PE or anti-IL-10-PE staining (a, c); numbers of LAPþ CD4þ

T cells by flow cytometry on anti-CD3þCD28-stimulated lung cells (b, d), and lung histology (periodic acid-Schiff staining) (e, f). Cell nuclei were stained

blue with 40,6-diamidino-2-phenylindole in a and c. Representative images of two independent experiments were acquired with a �40 objective.

Scale bars, 200mm. In b and d, numbers refer to % positive cells. (g) C57BL/6 mice were treated with p41þ zymosan, infected and treated with IL-10 or

TGF-b-neutralizing antibody at the time of infection. Scale bars, 200mm. None, rat IgG1 antibody.
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cocultures at 1:1 ratio. After 72 h, CFSE signal was analyzed by flow cytometry.

Suppression (%) was expressed as the relative inhibition of the percentage of

CFSE cells (100� (1-% CFSElow CD4þCD25� T cells in coculture/% CFSElow

CD4þCD25� T cells alone)) for CFSE-based measurement of proliferation.

Flow cytometry and intracellular staining of mouse cells
Cells were sequentially reacted with anti-CD4 (Fluorescein, clone: GK1.5),

anti-CD25 (Phycoerythrin, clone: 7D4) (Miltenyi Biotech) or anti-LAP

(TGF-b1) (Phycoerythrin, clone: TW7-16B4, Biolegend, Campoverde Srl,

Milan, Italy). For intracellular cytokine detection purified cells were stimulated

with 200 ng ml–1 of phorbol 12-myristate 13-acetate (Sigma-Aldrich) and

1mg ml�1of ionomycin (Sigma-Aldrich) for 2 h at 37 1C. Cells were cultured

for four additional hours with brefeldin and then permeabilized with the

CytoFix/CytoPerm kit (BD Pharmingen) for intra-cytoplasmic detection of

IFN-g (Alexa Fluor488, clone: XMG1.2, eBioscience) and IL-10 (Fluorescein,

clone: JES5-16E3, Biolegend). Cells are analyzed with a FACScan flow

cytofluorometer (Becton Dickinson, Mountain View, CA, USA) equipped

with CELLQuestTM software.

Enzyme-linked immunosorbent assay and real-time PCR analysis
of mouse cells
The level of cytokines in lung homogenates and culture supernatants was

determined by Kit enzyme-linked immunosorbent assay (R&D Systems, Milan,

Italy). Real-time Reverse Transcriptase-PCR was performed using the iCycler-

iQdetection system (Bio-Rad, Segrate (MI), Italy) and SYBR Green chemistry

(Finnzymes Oy, Espoo, Finland). Cells were lysed and total RNA was extracted

using RNeasy Mini Kit (QIAGEN, Milan, Italy) and was reverse transcribed

with Sensiscript Reverse Transcriptase (QIAGEN) according to the manufac-

turer’s directions. PCR primers for transcription factors were used as

described.30 The following c-maf primers were used: sense 50-GTAGACCAC

CTCAAGCAGGA-30; antisense 30-GAAAAATTCGGGAGAGGAAG-50.
Amplification efficiencies were validated and normalized against Gapdh. The

thermal profile for SYBR Green real-time PCR was at 95 1C for 3 min, followed

by 40 cycles of denaturation for 30 s at 95 1C and an annealing/extension step

of 30 s at 60 1C. Each data point was examined for integrity by analysis of the

amplification plot. The mRNA-normalized data were expressed as

relative cytokine mRNA expression in treated cells compared with that of

unstimulated cells.

Statistical analysis
Paired student’s t-tests were used for statistical analysis of data obtained from

human studies. For the analysis of murine studies, Student’s t-test or analysis

of variance with Bonferroni’s adjustment were used to determine statistical

significance (Po0.05). The data reported are either from one representative

experiment out of 3–5 independent experiments (histology and FACS analysis)

or pooled from 3–5 experiments. The in vivo groups consisted of 6–8 mice per

group. Data were analyzed by GraphPad Prism 4.03 program (GraphPad

Software, San Diego, CA, USA).
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