13 research outputs found
Measuring the health-related Sustainable Development Goals in 188 countries: a baseline analysis from the Global Burden of Disease Study 2015
BACKGROUND: In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030 ..
Measuring the health-related Sustainable Development Goals in 188 countries : a baseline analysis from the Global Burden of Disease Study 2015
Background In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). Methods We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. Findings In 2015, the median health-related SDG index was 59.3 (95% uncertainty interval 56.8-61.8) and varied widely by country, ranging from 85.5 (84.2-86.5) in Iceland to 20.4 (15.4-24.9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r(2) = 0.88) and the MDG index (r(2) = 0.2), whereas the non-MDG index had a weaker relation with SDI (r(2) = 0.79). Between 2000 and 2015, the health-related SDG index improved by a median of 7.9 (IQR 5.0-10.4), and gains on the MDG index (a median change of 10.0 [6.7-13.1]) exceeded that of the non-MDG index (a median change of 5.5 [2.1-8.9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. Interpretation GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.Peer reviewe
Burden of lower respiratory infections and associated risk factors across regions in Ethiopia: a subnational analysis of the Global Burden of Diseases 2019 study
Objective This analysis is to present the burden and trends of morbidity and mortality due to lower respiratory infections (LRIs), their contributing risk factors, and the disparity across administrative regions and cities from 1990 to 2019.Design This analysis used Global Burden of Disease 2019 framework to estimate morbidity and mortality outcomes of LRI and its contributing risk factors. The Global Burden of Disease study uses all available data sources and Cause of Death Ensemble model to estimate deaths from LRI and a meta-regression disease modelling technique to estimate LRI non-fatal outcomes with 95% uncertainty intervals (UI).Study setting The study includes nine region states and two chartered cities of Ethiopia.Outcome measures We calculated incidence, death and years of life lost (YLLs) due to LRIs and contributing risk factors using all accessible data sources. We calculated 95% UIs for the point estimates.Results In 2019, LRIs incidence, death and YLLs among all age groups were 8313.7 (95% UI 7757.6–8918), 59.4 (95% UI 49.8–71.4) and 2404.5 (95% UI 2059.4–2833.3) per 100 000 people, respectively. From 1990, the corresponding decline rates were 39%, 61% and 76%, respectively. Children under the age of 5 years account for 20% of episodes, 42% of mortalities and 70% of the YLL of the total burden of LRIs in 2019. The mortality rate was significantly higher in predominantly pastoralist regions—Benishangul-Gumuz 101.8 (95% UI 84.0–121.7) and Afar 103.7 (95% UI 86.6–122.6). The Somali region showed the least decline in mortality rates. More than three-fourths of under-5 child deaths due to LRIs were attributed to malnutrition. Household air pollution from solid fuel attributed to nearly half of the risk factors for all age mortalities due to LRIs in the country.Conclusion In Ethiopia, LRIs have reduced significantly across the regions over the years (except in elders), however, are still the third-leading cause of mortality, disproportionately affecting children younger than 5 years old and predominantly pastoralist regions. Interventions need to consider leading risk factors, targeted age groups and pastoralist and cross-border communities
Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020
Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year.
Methods For this analysis, we constructed burden-weighted dose-response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15-95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol.
Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15-39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0-0) and 0.603 (0.400-1.00) standard drinks per day, and the NDE varied between 0.002 (0-0) and 1.75 (0.698-4.30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0.114 (0-0.403) to 1.87 (0.500-3.30) standard drinks per day and an NDE that ranged between 0.193 (0-0.900) and 6.94 (3.40-8.30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59.1% (54.3-65.4) were aged 15-39 years and 76.9% (73.0-81.3) were male.
Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol
Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020
Background: The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods: For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings: The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation: There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding: Bill & Melinda Gates Foundation
Recommended from our members
Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019
Summary
Background
Reducing the burden of death due to infection is an urgent global public health priority. Previous studies have estimated the number of deaths associated with drug-resistant infections and sepsis and found that infections remain a leading cause of death globally. Understanding the global burden of common bacterial pathogens (both susceptible and resistant to antimicrobials) is essential to identify the greatest threats to public health. To our knowledge, this is the first study to present global comprehensive estimates of deaths associated with 33 bacterial pathogens across 11 major infectious syndromes.
Methods
We estimated deaths associated with 33 bacterial genera or species across 11 infectious syndromes in 2019 using methods from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, in addition to a subset of the input data described in the Global Burden of Antimicrobial Resistance 2019 study. This study included 343 million individual records or isolates covering 11 361 study-location-years. We used three modelling steps to estimate the number of deaths associated with each pathogen: deaths in which infection had a role, the fraction of deaths due to infection that are attributable to a given infectious syndrome, and the fraction of deaths due to an infectious syndrome that are attributable to a given pathogen. Estimates were produced for all ages and for males and females across 204 countries and territories in 2019. 95% uncertainty intervals (UIs) were calculated for final estimates of deaths and infections associated with the 33 bacterial pathogens following standard GBD methods by taking the 2·5th and 97·5th percentiles across 1000 posterior draws for each quantity of interest.
Findings
From an estimated 13·7 million (95% UI 10·9–17·1) infection-related deaths in 2019, there were 7·7 million deaths (5·7–10·2) associated with the 33 bacterial pathogens (both resistant and susceptible to antimicrobials) across the 11 infectious syndromes estimated in this study. We estimated deaths associated with the 33 bacterial pathogens to comprise 13·6% (10·2–18·1) of all global deaths and 56·2% (52·1–60·1) of all sepsis-related deaths in 2019. Five leading pathogens—Staphylococcus aureus, Escherichia coli, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa—were responsible for 54·9% (52·9–56·9) of deaths among the investigated bacteria. The deadliest infectious syndromes and pathogens varied by location and age. The age-standardised mortality rate associated with these bacterial pathogens was highest in the sub-Saharan Africa super-region, with 230 deaths (185–285) per 100 000 population, and lowest in the high-income super-region, with 52·2 deaths (37·4–71·5) per 100 000 population. S aureus was the leading bacterial cause of death in 135 countries and was also associated with the most deaths in individuals older than 15 years, globally. Among children younger than 5 years, S pneumoniae was the pathogen associated with the most deaths. In 2019, more than 6 million deaths occurred as a result of three bacterial infectious syndromes, with lower respiratory infections and bloodstream infections each causing more than 2 million deaths and peritoneal and intra-abdominal infections causing more than 1 million deaths.
Interpretation
The 33 bacterial pathogens that we investigated in this study are a substantial source of health loss globally, with considerable variation in their distribution across infectious syndromes and locations. Compared with GBD Level 3 underlying causes of death, deaths associated with these bacteria would rank as the second leading cause of death globally in 2019; hence, they should be considered an urgent priority for intervention within the global health community. Strategies to address the burden of bacterial infections include infection prevention, optimised use of antibiotics, improved capacity for microbiological analysis, vaccine development, and improved and more pervasive use of available vaccines. These estimates can be used to help set priorities for vaccine need, demand, and development
Recommended from our members
Age–sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019: results from the Global Burden of Disease Study 2019
Summary
Background
The global burden of lower respiratory infections (LRIs) and corresponding risk factors in children older than 5 years and adults has not been studied as comprehensively as it has been in children younger than 5 years. We assessed the burden and trends of LRIs and risk factors across all age groups by sex, for 204 countries and territories.
Methods
In this analysis of data for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we used clinician-diagnosed pneumonia or bronchiolitis as our case definition for LRIs. We included International Classification of Diseases 9th edition codes 079.6, 466–469, 470.0, 480–482.8, 483.0–483.9, 484.1–484.2, 484.6–484.7, and 487–489 and International Classification of Diseases 10th edition codes A48.1, A70, B97.4–B97.6, J09–J15.8, J16–J16.9, J20–J21.9, J91.0, P23.0–P23.4, and U04–U04.9. We used the Cause of Death Ensemble modelling strategy to analyse 23 109 site-years of vital registration data, 825 site-years of sample vital registration data, 1766 site-years of verbal autopsy data, and 681 site-years of mortality surveillance data. We used DisMod-MR 2.1, a Bayesian meta-regression tool, to analyse age–sex-specific incidence and prevalence data identified via systematic reviews of the literature, population-based survey data, and claims and inpatient data. Additionally, we estimated age–sex-specific LRI mortality that is attributable to the independent effects of 14 risk factors.
Findings
Globally, in 2019, we estimated that there were 257 million (95% uncertainty interval [UI] 240–275) LRI incident episodes in males and 232 million (217–248) in females. In the same year, LRIs accounted for 1·30 million (95% UI 1·18–1·42) male deaths and 1·20 million (1·07–1·33) female deaths. Age-standardised incidence and mortality rates were 1·17 times (95% UI 1·16–1·18) and 1·31 times (95% UI 1·23–1·41) greater in males than in females in 2019. Between 1990 and 2019, LRI incidence and mortality rates declined at different rates across age groups and an increase in LRI episodes and deaths was estimated among all adult age groups, with males aged 70 years and older having the highest increase in LRI episodes (126·0% [95% UI 121·4–131·1]) and deaths (100·0% [83·4–115·9]). During the same period, LRI episodes and deaths in children younger than 15 years were estimated to have decreased, and the greatest decline was observed for LRI deaths in males younger than 5 years (–70·7% [–77·2 to –61·8]). The leading risk factors for LRI mortality varied across age groups and sex. More than half of global LRI deaths in children younger than 5 years were attributable to child wasting (population attributable fraction [PAF] 53·0% [95% UI 37·7–61·8] in males and 56·4% [40·7–65·1] in females), and more than a quarter of LRI deaths among those aged 5–14 years were attributable to household air pollution (PAF 26·0% [95% UI 16·6–35·5] for males and PAF 25·8% [16·3–35·4] for females). PAFs of male LRI deaths attributed to smoking were 20·4% (95% UI 15·4–25·2) in those aged 15–49 years, 30·5% (24·1–36·9) in those aged 50–69 years, and 21·9% (16·8–27·3) in those aged 70 years and older. PAFs of female LRI deaths attributed to household air pollution were 21·1% (95% UI 14·5–27·9) in those aged 15–49 years and 18·2% (12·5–24·5) in those aged 50–69 years. For females aged 70 years and older, the leading risk factor, ambient particulate matter, was responsible for 11·7% (95% UI 8·2–15·8) of LRI deaths.
Interpretation
The patterns and progress in reducing the burden of LRIs and key risk factors for mortality varied across age groups and sexes. The progress seen in children younger than 5 years was clearly a result of targeted interventions, such as vaccination and reduction of exposure to risk factors. Similar interventions for other age groups could contribute to the achievement of multiple Sustainable Development Goals targets, including promoting wellbeing at all ages and reducing health inequalities. Interventions, including addressing risk factors such as child wasting, smoking, ambient particulate matter pollution, and household air pollution, would prevent deaths and reduce health disparities