53 research outputs found

    Testing the effects of habitat modification on the reptiles of a southern African grassland

    Get PDF
    A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, South Africa. August 2014Unable to load abstract

    The Gauteng conservation plan : planning for biodiversity in a rapidly urbanising province

    Get PDF
    BACKGROUND : Gauteng, the smallest of South Africa’s nine provinces, is rich in biodiversity; yet it is also the most densely populated province and thus faces significant development pressures. OBJECTIVE : A project was therefore initiated in 2001 to identify areas of biodiversity importance in the province, using the systematic spatial biodiversity planning approach that has been adopted in South Africa. This article reports on the final version of the provincial conservation plan as completed in 2011. METHOD : Vegetation types and quaternary catchments constituted the coarse filter biodiversity features, while rare and threatened taxa constituted the fine filter features. Ecological processes were captured by a range of landscape features, while planning for climate change primarily involved the design of a corridor network. Planning was undertaken within the ArcView linked C-plan decision support system, where a cost surface preferentially directed the selection of available sites towards low-cost areas. RESULTS : Forty-four per cent of the province is required to achieve targets. Only 8% of features are close to having their targets met or are adequately conserved in the current protected area network of 23 protected areas covering 2.4% of the province, while 73% of features are absent or poorly represented. CONCLUSION : The existing protected area network is inadequate for the conservation of biodiversity in Gauteng. The Gauteng Conservation Plan identifies a set of areas that are required to achieve conservation targets. It is important that identified areas currently not in the protected area network are protected either formally or through legislated land use management processes.http://www.abcjournal.orgam2018Zoology and Entomolog

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Guidelines for Reporting Outcomes in Trial Protocols: The SPIRIT-Outcomes 2022 Extension

    Get PDF
    Importance: Complete information in a trial protocol regarding study outcomes is crucial for obtaining regulatory approvals, ensuring standardized trial conduct, reducing research waste, and providing transparency of methods to facilitate trial replication, critical appraisal, accurate reporting and interpretation of trial results, and knowledge synthesis. However, recommendations on what outcome-specific information should be included are diverse and inconsistent. To improve reporting practices promoting transparent and reproducible outcome selection, assessment, and analysis, a need for specific and harmonized guidance as to what outcome-specific information should be addressed in clinical trial protocols exists. Objective: To develop harmonized, evidence- and consensus-based standards for describing outcomes in clinical trial protocols through integration with the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) 2013 statement. Evidence Review: Using the Enhancing the Quality and Transparency of Health Research (EQUATOR) methodological framework, the SPIRIT-Outcomes 2022 extension of the SPIRIT 2013 statement was developed by (1) generation and evaluation of candidate outcome reporting items via consultation with experts and a scoping review of existing guidance for reporting trial outcomes (published within the 10 years prior to March 19, 2018) identified through expert solicitation, electronic database searches of MEDLINE and the Cochrane Methodology Register, gray literature searches, and reference list searches; (2) a 3-round international Delphi voting process (November 2018-February 2019) completed by 124 panelists from 22 countries to rate and identify additional items; and (3) an in-person consensus meeting (April 9-10, 2019) attended by 25 panelists to identify essential items for outcome-specific reporting to be addressed in clinical trial protocols. Findings: The scoping review and consultation with experts identified 108 recommendations relevant to outcome-specific reporting to be addressed in trial protocols, the majority (72%) of which were not included in the SPIRIT 2013 statement. All recommendations were consolidated into 56 items for Delphi voting; after the Delphi survey process, 19 items met criteria for further evaluation at the consensus meeting and possible inclusion in the SPIRIT-Outcomes 2022 extension. The discussions during and after the consensus meeting yielded 9 items that elaborate on the SPIRIT 2013 statement checklist items and are related to completely defining and justifying the choice of primary, secondary, and other outcomes (SPIRIT 2013 statement checklist item 12) prospectively in the trial protocol, defining and justifying the target difference between treatment groups for the primary outcome used in the sample size calculations (SPIRIT 2013 statement checklist item 14), describing the responsiveness of the study instruments used to assess the outcome and providing details on the outcome assessors (SPIRIT 2013 statement checklist item 18a), and describing any planned methods to account for multiplicity relating to the analyses or interpretation of the results (SPIRIT 2013 statement checklist item 20a). Conclusions and Relevance: This SPIRIT-Outcomes 2022 extension of the SPIRIT 2013 statement provides 9 outcome-specific items that should be addressed in all trial protocols and may help increase trial utility, replicability, and transparency and may minimize the risk of selective nonreporting of trial results

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    Measurement of W± and Z-boson production cross sections in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    See paper for full list of authors - 17 pages plus author list + cover pages (34 pages total), 5 figures, 3 tables, submitted to Phys. Lett. B, All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-03/International audienceMeasurements of the W±±νW^{\pm} \rightarrow \ell^{\pm} \nu and Z+Z \rightarrow \ell^+ \ell^- production cross sections (where ±=e±,μ±\ell^{\pm}=e^{\pm},\mu^{\pm}) in proton-proton collisions at s=13\sqrt{s}=13 TeV are presented using data recorded by the ATLAS experiment at the Large Hadron Collider, corresponding to a total integrated luminosity of 81 pb1^{-1}. The total inclusive W±W^{\pm}-boson production cross sections times the single-lepton-flavour branching ratios are σW+tot=11.78±0.02(stat)±0.32(sys)±0.59(lumi)\sigma_{W^+}^{tot}= 11.78 \pm 0.02 (stat) \pm 0.32 (sys) \pm 0.59 (lumi) nb and σWtot=8.75±0.02(stat)±0.24(sys)±0.44(lumi)\sigma_{W^-}^{tot} = 8.75 \pm 0.02 (stat) \pm 0.24 (sys) \pm 0.44 (lumi) nb for W+W^+ and WW^-, respectively. The total inclusive ZZ-boson production cross section times leptonic branching ratio, within the invariant mass window 66<m<11666 < m_{\ell\ell} < 116 GeV, is σZtot=1.97±0.01(stat)±0.04(sys)±0.10(lumi)\sigma_{Z}^{tot} = 1.97 \pm 0.01 (stat) \pm 0.04 (sys) \pm 0.10 (lumi) nb. The W+W^+, WW^-, and ZZ-boson production cross sections and cross-section ratios within a fiducial region defined by the detector acceptance are also measured. The cross-section ratios benefit from significant cancellation of experimental uncertainties, resulting in σW+fid/σWfid=1.295±0.003(stat)±0.010(sys)\sigma_{W^+}^{fid}/\sigma_{W^-}^{fid} = 1.295 \pm 0.003 (stat) \pm 0.010 (sys) and σW±fid/σZfid=10.31±0.04(stat)±0.20(sys)\sigma_{W^{\pm}}^{fid}/\sigma_{Z}^{fid} = 10.31 \pm 0.04 (stat) \pm 0.20 (sys). Theoretical predictions, based on calculations accurate to next-to-next-to-leading order for quantum chromodynamics and next-to-leading order for electroweak processes and which employ different parton distribution function sets, are compared to these measurements

    Measurement of the charge asymmetry in highly boosted top-quark pair production in √s=8 TeV pp collision data collected by the ATLAS experiment

    Get PDF
    In the pp→tt process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb-1 of pp collision data at √s=8TeV collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair (mtt>0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within -2<|yt|-|yt|<2 is measured to be 4.2±3.2%, in agreement with the Standard Model prediction at next-to-leading order. A differential measurement in three tt- mass bins is also presented
    corecore