1,055 research outputs found

    Understanding feedback report uptake: process evaluation findings from a 13-month feedback intervention in long-term care settings

    Full text link
    Abstract Background Long-term care settings provide care to a large proportion of predominantly older, highly disabled adults across the United States and Canada. Managing and improving quality of care is challenging, in part because staffing is highly dependent on relatively non-professional health care aides and resources are limited. Feedback interventions in these settings are relatively rare, and there has been little published information about the process of feedback intervention. Our objectives were to describe the key components of uptake of the feedback reports, as well as other indicators of participant response to the intervention. Methods We conducted this project in nine long-term care units in four facilities in Edmonton, Canada. We used mixed methods, including observations during a 13-month feedback report intervention with nine post-feedback survey cycles, to conduct a process evaluation of a feedback report intervention in these units. We included all facility-based direct care providers (staff) in the feedback report distribution and survey administration. We conducted descriptive analyses of the data from observations and surveys, presenting this in tabular and graphic form. We constructed a short scale to measure uptake of the feedback reports. Our analysis evaluated feedback report uptake by provider type over the 13 months of the intervention. Results We received a total of 1,080 survey responses over the period of the intervention, which varied by type of provider, facility, and survey month. Total number of reports distributed ranged from 103 in cycle 12 to 229 in cycle 3, although the method of delivery varied widely across the period, from 12% to 65% delivered directly to individuals and 15% to 84% left for later distribution. The key elements of feedback uptake, including receiving, reading, understanding, discussing, and reporting a perception that the reports were useful, varied by survey cycle and provider type, as well as by facility. Uptake, as we measured it, was consistently high overall, but varied widely by provider type and time period. Conclusions We report detailed process data describing the aspects of uptake of a feedback report during an intensive, longitudinal feedback intervention in long-term care facilities. Uptake is a complex process for which we used multiple measures. We demonstrate the feasibility of conducting a complex longitudinal feedback intervention in relatively resource-poor long-term care facilities to a wider range of provider types than have been included in prior feedback interventions.http://deepblue.lib.umich.edu/bitstream/2027.42/110519/1/13012_2015_Article_208.pd

    Computer modeling in training Bachelor of Electromechanics

    Get PDF
    У публікації наведені дисципліни у яких відбувається цілеспрямоване формування навичок моделювання бакалаврів електромеханіки, розглянуті компетенції, які ці дисципліни охоплюють. Визначено, що блок моделювання забезпечує теоретичне та практичне наповнення фундаментальної, загально та спеціалізовано-професійної підготовки бакалавра електромеханіки, надаючи можливість сформувати компетентність бакалавра електромеханіки в моделюванні.The publication given discipline which is focused Bachelor modeling the skills eleсtromechanics, reviewed competencies that these disciplines cover. Determined that the simulation unit provides theoretical and practical content of basic, general and specialized professional training Bachelor Electromechanics, providing the ability to create competence Bachelor of Electromechanics in simulation

    Ad-Syn-Net: Systematic Identification of alzheimer\u27s Disease-Associated Mutation and Co-Mutation Vulnerabilities Via Deep Learning

    Get PDF
    Alzheimer\u27s disease (AD) is one of the most challenging neurodegenerative diseases because of its complicated and progressive mechanisms, and multiple risk factors. Increasing research evidence demonstrates that genetics may be a key factor responsible for the occurrence of the disease. Although previous reports identified quite a few AD-associated genes, they were mostly limited owing to patient sample size and selection bias. There is a lack of comprehensive research aimed to identify AD-associated risk mutations systematically. to address this challenge, we hereby construct a large-scale AD mutation and co-mutation framework (\u27AD-Syn-Net\u27), and propose deep learning models named Deep-SMCI and Deep-CMCI configured with fully connected layers that are capable of predicting cognitive impairment of subjects effectively based on genetic mutation and co-mutation profiles. Next, we apply the customized frameworks to data sets to evaluate the importance scores of the mutations and identified mutation effectors and co-mutation combination vulnerabilities contributing to cognitive impairment. Furthermore, we evaluate the influence of mutation pairs on the network architecture to dissect the genetic organization of AD and identify novel co-mutations that could be responsible for dementia, laying a solid foundation for proposing future targeted therapy for AD precision medicine. Our deep learning model codes are available open access here: https://github.com/Pan-Bio/AD-mutation-effectors

    Rapid Changes in Synaptic Strength After Mild Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) affects millions of Americans annually, but effective treatments remain inadequate due to our poor understanding of how injury impacts neural function. Data are particularly limited for mild, closed-skull TBI, which forms the majority of human cases, and for acute injury phases, when trauma effects and compensatory responses appear highly dynamic. Here we use a mouse model of mild TBI to characterize injury-induced synaptic dysfunction, and examine its progression over the hours to days after trauma. Mild injury consistently caused both locomotor deficits and localized neuroinflammation in piriform and entorhinal cortices, along with reduced olfactory discrimination ability. Using whole-cell recordings to characterize synaptic input onto piriform pyramidal neurons, we found moderate effects on excitatory or inhibitory synaptic function at 48 h after TBI and robust increase in excitatory inputs in slices prepared 1 h after injury. Excitatory increases predominated over inhibitory effects, suggesting that loss of excitatory-inhibitory balance is a common feature of both mild and severe TBI. Our data indicate that mild injury drives rapidly evolving alterations in neural function in the hours following injury, highlighting the need to better characterize the interplay between the primary trauma responses and compensatory effects during this early time period

    Erratum to: Molecular modelling study of 2-phenylethynyladenosine (PEAdo) derivatives as highly selective A3 adenosine receptor ligands

    Get PDF
    A series of 2-phenylethynyladenosine (PEAdo) derivatives substituted in the N6- and 4′position was synthesised and the new derivatives were tested at the four human adenosine receptors stably transfected into Chinese hamster ovary (CHO) cells, using radioligand binding studies (A1, A2A, A3) or adenylyl cyclase activity assay (A2B). Binding studies showed that the presence of a phenyl ethynyl group in the 2 position of adenosine favoured the interaction with A3 receptors, resulting in compounds endowed with high affinity and selectivity for the A3 subtype. Additional substitution of the N6- and 4′position increases both A3 affinity and selectivity. The results showed that the new compounds have a good affinity for the A3 receptor and in particular, the N6-methoxy-2-phenylethynyl-5′N-methylcarboxamidoadenosine, with a Ki at A3 of 1.9 nM and a selectivity A1/A3 and A2A/A3 of 4,800- and 8,600-fold, respectively. Therefore, it is one of the most potent and selective agonists at the human A3 adenosine receptor subtype reported so far. Furthermore, functional assays of inhibition of 10 μM forskolin-stimulated cAMP production via the adenosine A3 receptor revealed that the new trisubstituted adenosine derivatives behave as full agonist of this receptor subtype. Docking analysis of these compounds was performed at a homology model of the human A3 receptor based on the bovine rhodopsin crystal structure as template, and the results are in accordance with the biological data

    A novel pathway regulates memory and plasticity via SIRT1 and miR-134

    Get PDF
    The NAD-dependent deacetylase Sir2 was initially identified as a mediator of replicative lifespan in budding yeast and was subsequently shown to modulate longevity in worms and flies. Its mammalian homologue, SIRT1, seems to have evolved complex systemic roles in cardiac function, DNA repair and genomic stability. Recent studies suggest a functional relevance of SIRT1 in normal brain physiology and neurological disorders. However, it is unknown if SIRT1 has a role in higher-order brain functions. We report that SIRT1 modulates synaptic plasticity and memory formation via a microRNA-mediated mechanism. Activation of SIRT1 enhances, whereas its loss-of-function impairs, synaptic plasticity. Surprisingly, these effects were mediated via post-transcriptional regulation of cAMP response binding protein (CREB) expression by a brain-specific microRNA, miR-134. SIRT1 normally functions to limit expression of miR-134 via a repressor complex containing the transcription factor YY1, and unchecked miR-134 expression following SIRT1 deficiency results in the downregulated expression of CREB and brain-derived neurotrophic factor (BDNF), thereby impairing synaptic plasticity. These findings demonstrate a new role for SIRT1 in cognition and a previously unknown microRNA-based mechanism by which SIRT1 regulates these processes. Furthermore, these results describe a separate branch of SIRT1 signalling, in which SIRT1 has a direct role in regulating normal brain function in a manner that is disparate from its cell survival functions, demonstrating its value as a potential therapeutic target for the treatment of central nervous system disorders

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    Identification of QTL genes for BMD variation using both linkage and gene-based association approaches

    Get PDF
    Low bone mineral density (BMD) is a risk factor for osteoporotic fracture with a high heritability. Previous large scale linkage study in Northern Chinese has identified four significant quantitative trait loci (QTL) for BMD variation on chromosome 2q24, 5q21, 7p21 and 13q21. We performed a replication study of these four QTL in 1,459 Southern Chinese from 306 pedigrees. Successful replication was observed on chromosome 5q21 for femoral neck BMD with a LOD score of 1.38 (nominal p value = 0.006). We have previously identified this locus in a genome scan meta-analysis of BMD variation in a white population. Subsequent QTL-wide gene-based association analysis in 800 subjects with extreme BMD identified CAST and ERAP1 as novel BMD candidate genes (empirical p value of 0.032 and 0.014, respectively). The associations were independently replicated in a Northern European population (empirical p value of 0.01 and 0.004 for CAST and ERAP1, respectively). These findings provide further evidence that 5q21 is a BMD QTL, and CAST and ERAP1 may be associated with femoral neck BMD variation

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore