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Abstract

Alzheimer’s disease (AD) is one of the most challenging neurodegenerative diseases because of its complicated and progressive
mechanisms, and multiple risk factors. Increasing research evidence demonstrates that genetics may be a key factor responsible
for the occurrence of the disease. Although previous reports identified quite a few AD-associated genes, they were mostly limited
owing to patient sample size and selection bias. There is a lack of comprehensive research aimed to identify AD-associated risk
mutations systematically. To address this challenge, we hereby construct a large-scale AD mutation and co-mutation framework (‘AD-
Syn-Net’), and propose deep learning models named Deep-SMCI and Deep-CMCI configured with fully connected layers that are capable
of predicting cognitive impairment of subjects effectively based on genetic mutation and co-mutation profiles. Next, we apply the
customized frameworks to data sets to evaluate the importance scores of the mutations and identified mutation effectors and co-
mutation combination vulnerabilities contributing to cognitive impairment. Furthermore, we evaluate the influence of mutation pairs
on the network architecture to dissect the genetic organization of AD and identify novel co-mutations that could be responsible for
dementia, laying a solid foundation for proposing future targeted therapy for AD precision medicine. Our deep learning model codes
are available open access here: https://github.com/Pan-Bio/AD-mutation-effectors.
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Introduction
As a neurodegenerative disease with amyloid beta peptide, neu-
ritic plaques and hyperphosphorylated tau protein deposited in
Alzheimer’s Disease (AD) brain tissues, AD is the key driver that
causes dementia in the elderly, resulting in progressive damage to
the brain and finally even death [1–3]. With increasing incidences
each year, AD is rising to the sixth leading cause of death in the
United States, and the number of AD dementia cases will grow
to more than 100 million in 2050 if effective treatment is not
found [4]. Although the biology of AD is gradually understood,
currently the exact etiology of AD is still not illuminated, because
the development of AD comprises a complicated plethora of
progressive, interactive, devastating processes [5]. Evidence from
family and twin studies shows that genetic factors may play a
vital role and account for at least 80% of AD cases, indicating

high heritability of the development and progression of AD [6–8].
Decade-long research works have sought to identify the molecular
genetic mechanism of AD and have found multiple autosomal
pathogenic germline mutations such as mutations in APP, PSEN1
and PSEN2 associated with the early onset form of AD (EOAD) and
mutations in APOE and TREM2 associated with the late-onset form
of AD (LOAD) [9–13]. However, known mutations in these genes
can only explain a small fraction of AD cases. For example, rare
mutations in APP, PSEN1 and PSEN2 only account for 5–10% of
EOAD cases, leaving a large number of genetically unexplained
AD cases, especially for LOAD where there is a more complex
genetic etiology and less explained genetic component [7, 14–19].
Therefore, understanding the genetics and the mechanism of AD
would benefit early detection, prevention and treatment of AD.
The community currently is in urgent need of illuminating the
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genetic cause of AD development and progression [20].
With genome-wide association and meta-analysis, multiple

susceptibility loci were identified related to LOAD, including CLU,
PICALM, CR1, BIN1 and TOMM40 genes [21–24]. Taking advantage
of linkage analyses, additional AD-associated risk genes were
discovered, including DAPK1 and UQBLN1 on chromosome 9, IDE
and TFAM on chromosome 10, GAB2 and SORL1 on chromo-
some 11 [25–30]. Using next-generation sequencing technology,
researchers identified TYROBP and NOTCH3 as candidates for
causing AD [31–34]. By using the approximate Firth regression test
for unbalanced case–control phenotypes, dozens of more genes
were identified to be associated with cognitive disorders in AD,
including AMPD3, GBE1 and PLD1 [35, 36].

Although the abovementioned designs and methods identified
quite a few AD-associated genes and mutations successfully,
there were several notable limitations to these studies. For exam-
ple, most of the association analyses were carried out in a limited
small number of subjects and usually were restricted to familial
symptomatic and asymptomatic individuals, making identify-
ing liable genes challenging because of sampling and diagnostic
issues [25, 29, 30, 37]; a considerable portion of AD-associated
genes identified by GWAS and linkage could not be confirmed
in independent research as well [38–40]. A gene associated with
AD only reflects a correlation relationship with AD, but does not
imply that the gene is a definite deterministic risk factor involved
in AD development and progression [25, 29, 30]. Also sometimes,
a specific mutation or variant of AD-associated genes could not
be identified owing to different populations [29, 41–43]. More
importantly, most of the previous analyses did not take account
into the interaction between genes, which is found more impor-
tant in the development and progression of AD [44–47]. Besides,
lacking a unified and comprehensive metric measuring cognition
impairment may be another reason why identified AD-associated
variants cannot be consistent across independent research works
[40, 48, 49].

Therefore, novel integrative computational frameworks are
necessary to more accurately evaluate AD variants. In addition,
our previous work indicates that protein products of mutated dis-
ease genes do not function in isolation, but are part of highly inter-
connected signaling networks [50–53]. With systematic whole-
exome sequencing approaches, AD patients are expected to har-
bor many more disease-liable variants [54–56]. Even in the same
AD patient, several interactive AD-associated gene mutations are
often at play [57–60]. Our conceptual framework is to systemati-
cally link AD (‘disease phenome’) [61] with a complete list of AD
susceptibility mutations (‘disease genome’) [62–65], resulting in a
global view of the ‘AD diseasome’. With the advancement of arti-
ficial intelligence and high-performance computing, deep learn-
ing technologies are becoming increasingly active in biology and
genome science, and achieving substantial success in a variety of
biological domains, including vaccine target identification, can-
cer subtyping, cancer target identification, functional genomics
and even drug discovery [66–74]. For example, researchers have
developed a robust prediction model with a graph convolutional
network to identify novel drug-target interactions, which acceler-
ates drug development [72]. The application of deep learning in
genetic data would be promising in identifying AD susceptibility
mutations and illuminating the mechanism of AD development
and progression.

Here we propose a deep learning-based framework to address
the abovementioned problems, and meanwhile, the framework
we propose presents advantages compared with previous work. To
our best knowledge, this is one of the first studies to incorporate

unified large-scale AD samples and data sets, taking into account
population stratification, sample size and diagnostic issues.
Owing to the large sample size in our study, we, therefore, could
integrate a comprehensive genetic mutation landscape, and this is
beneficial to measure the effect of each mutation systematically
and unbiasedly on patient populations. More importantly, our
framework trained on the large-scale samples could evaluate
the effects of mutations on AD development and progression
and even classify these mutations into two groups, including AD-
promoting mutations and AD-suppressive mutations. Considering
the combination of a gene such as APOE with another AD-
associated gene such as GAB2 or SORL1 becomes a more useful
predictor of AD risk based on previous reports [28], our study
could probably become the first to integrate comprehensive
mutation pairs and evaluate the effects of these co-mutation
pairs systematically in gene interaction networks.

In this paper, we first introduce the data sets we collect from
the Alzheimer Disease Neuroimaging Initiative (ADNI) and the
processing pipeline of the data sets. To perform an unbiased
predictive performance evaluation for our models, namely, Deep-
SMCI (single mutation for cognitive impairment) and Deep-CMCI
(co-mutation for cognitive impairment), we devise and adopt
multiple baselines and metrics to compare with them utilizing
cross-validation. Afterwards, we detail the framework of Deep-
SMCI and Deep-CMCI and the optimization processes based on
Bayesian applied to the model training. After model optimization,
we show the robust predictive performance of Deep-SMCI and
Deep-CMCI compared with control models. Next, we apply the
optimized Deep-SMCI and Deep-CMCI to the data sets and rank
single mutations and co-mutations based on their effect size on
the cognitive impairment using permutation tests, and further
identify AD-promoting and AD suppressive effector mutations
based on statistical analysis. To furthermore extend our findings,
we also apply mutual information (MI) and Lime to the data sets,
by comparing the results from these two methods. In addition
to the overlapping effectors, novel effectors are found as well,
further expanding our mutation findings [75]. Based on these AD-
promoting effectors and suppressors (mutations and mutation
pairs), we would not only gain new insights into the mechanisms
of action underlying AD progression but also provide potential
novel diagnostic and therapeutic targets to treat cognitive impair-
ment in AD.

Materials and methods
Data sets
Genetic mutation data sets (Illumina Omni 2.5 M, WGS plat-
form) were collected from the ADNI, and these data sets covered
subjects with available cognitive evaluation reports that were
recruited from multiple cohorts, including ADNI-1–3 and ADNI-
GO. Detailed information on the data acquisition and processing
of ADNI WGS could be found on the website (https://adni.loni.
usc.edu/data-samples/data-types/). For characterizing the extent
of cognitive dysfunction for subjects, the Alzheimer’s Disease
Assessment Scale–Cognitive Subscale (ADAS-Cog) was obtained
from ADNI. More specifically, we adopted ADAS-Cog-11 to mea-
sure cognitive impairment for subjects. For consistency, we kept
the ADAS-Cog-11 test scores of subjects at the baseline visit
code in the ADNI project. Finally, we filtered out and obtained
794 subjects with available WGS and ADAS-Cog-11 data sets at
baseline time, including 275 ADNI-1, 395 ADNI-2 and 124 ADNI-
GO subjects. The detailed clinical information of our AD subjects
is shown in Supplementary Table 1.

https://adni.loni.usc.edu/data-samples/data-types/
https://adni.loni.usc.edu/data-samples/data-types/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data


AD-Syn-Net | 3

Figure 1. The workflow of the cognitive impairment prediction and effector identification.

Data processing
Based on mutation profiles in the VCF format obtained from
ADNI, we merged all mutation features across 794 subjects and
generated a huge matrix where each row represents a subject
and each column represents a mutation feature. To facilitate
the cognitive impairment prediction and AD mutation effectors
identification, we kept the mutations arising from those proven
AD-associated genes, including 307 GenAge genes and 550
LongevityMap genes, and finally got 2 671 687 unique mutation
landscapes [76, 77]. If one subject carries one mutation, then the
entry value for the subject would be 1, otherwise, it would be 0.

Predictive performance evaluation
To carry out a reliable performance evaluation, we devised multi-
ple traditional machine learning models as baselines, including
decision tree (DT), gradient boosting (GB), elastic net (EN) and
support vector regression (SVR) (Figure 1). We carried out a grid
search scheme for optimizing these four baseline models. In addi-
tion, we constructed two deep learning models based on gated

recurrent units (GRU) and long short-term memory (LSTM), which
are known to be effective and robust in biological sequence data,
and optimized these two models based on Bayesian optimiza-
tion and then compared their predictive performance with other
methods in the aspect of mean absolute error (MAE) and root
mean squared error (RMSE) [78, 79]. We adopted repeats 10-fold
cross-validation five times with different randomization in each
repetition, making the evaluation more unbiased. Here, the defini-
tions of MAE and RMSE for evaluating the predictive performance
are as follows:

MAE = 1
N

N∑
i=1

| yi − ŷi |,

RMSE =
√√√√ 1

N

N∑
i=1

(
yi − ŷi

)2,

where N is the number of samples tests; yi is the ADAS-Cog-
11 score for sample i; ŷi is the predicted ADAS-Cog-11 score for
sample i.
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Figure 2. The deep learning model for cognitive impairment prediction based on mutations and co-mutations.

Construction of deep-SMCI and deep-CMCI for
cognitive impairment predictions
As shown in Figure 2, both Deep-SMCI and Deep-CMCI consist of a
multiple-layer neural network. The input for this model was the 1-
D dimensional mutation profiles for each subject, and the output
was the ADAS-Cog-11 for the subject. Basically, the model was
constructed by a fully connected (FC) network. In the network,
a hidden unit j in the FC layer k takes the sum of the weighted
outputs plus the bias from the previous layer k − 1 as the input
and generates an output ok

j :

ok
j = f

(
U∑

i=1

wk−1
i,j ok−1

i + bk−1
j

)
,

where U is the number of hidden neural units;
{
wk−1

i,j , bk−1
j

}U

i=i=1
represents the weights and the bias term of unit j in the layer k to
be optimized; and f is a nonlinear activation function.

To boost the predictive efficacy, we placed a batch normaliza-
tion layer between FC layers, which could significantly reduce
the problem of coordinating updates across layers based on
reparameterization [80]. After being transformed multiple times,
the input information was fed into the output layer consisting
of one unit to predict ADAS-Cog-11 of the input subject. We took
advantage of multiple optimization techniques to facilitate model
training and make the model optimize effectively. We applied
dropout to the intermediate layer between FC layers, which
could average multiple layers and avoid overfitting during the
model training [81]. Early stopping was used to regularize the
model training, and we set the following criteria: monitor aim is
validation loss and training patience is five epochs [82]. Lastly, to
achieve a better local minimum of parameters efficiently, Adam
method was adopted for gradient descent, which was proved to be
invariant to diagonal rescaling of the gradients and well suited for
the ADAS-Cog-11 prediction where there was high-dimensional

input data [83]. The loss function for training Deep-SMCI and
Deep-CMCI was the mean squared error, namely,

MSE = 1
N

N∑
i=1

(
yi − ŷi

)2,

where N was the number of samples; yi was the ADAS-Cog-11
score for sample i; ŷi was the predicted ADAS-Cog-11 score for
sample i.

Deep-SMCI and deep-CMCI optimization
Considering the input of Deep-SMCI and Deep-CMCI was high-
dimensional features, we took into account the hyperparameters
well suited for cognitive score prediction. Therefore, we defined an
enormous hyperparameter space to tune the model: the number
of FC layers ranged from 2 to 8 with a step size is 1; the number of
hidden units for each FC layer varied from 16 to 256 in a double-
fold way; a group of dropout rates was evaluated, ranging from 0
to 0.5, with a step size of 0.1; the batch size varied from 8 to 64,
with a 2-fold way; L1 and L2 regularization penalty ranged from
1e−5 to 1e−1 in the output FC layers with a 10-fold step size; the
initialized value of each parameter in the FC layers was sampled
randomly from the set of ones, random uniform and random nor-
mal distribution; each FC layer applies the exponential linear unit,
rectified linear activation or hyperbolic tangent (Tanh) randomly.

To facilitate the process of hyperparameter search in the high-
dimensional space, we adopted Bayesian optimization during
model training, which could automatically explore hyperparam-
eter combinations wisely and at a low computation cost [39].
Here, we defined 500 initiation points in the hyperparameters
space and a maximum of 10 iterations for models with the
number of FC layers from 2 to 8, respectively, when setting
up Bayesian optimization. During the training process, as
iteration grew, and the posterior distribution of the model’s cost
function improved, the Bayesian optimization algorithm could
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Figure 3. Evaluation of predictive performance for cognitive impairment prediction. (A) MAE predictive performance comparison for Deep-SMCI and
baselines based on mutation landscape. (B) RMSE predictive performance comparison for Deep-SMCI and baselines based on mutation landscape. (C)
MAE predictive performance comparison for Deep-CMCI and baselines based on co-mutation landscape. (D) RMSE predictive performance comparison
for Deep-CMCI and baselines based on co-mutation landscape.

further explore hyperparameter space that was worth exploring
automatically and sought the best hyperparameter combination
efficiently. For each iteration, it took ∼40 h to finish the model
training and evaluation on AMD EPYC 7642 48-core processor.
We finally chose the models constructed with five FC layers
as basic components for Deep-SMCI and Deep-CMCI based on
performance comparison with models with different numbers of
FC layers in the aspect of MAE and RMSE. Deep-SMCI and Deep-
CMCI were implemented based on TensorFlow2 and Keras [84, 85].
Model evaluation optimization was achieved by scikit-learn and
Bayesian Optimization Python library [86, 87].

Ranking of AD effectors
To identify AD promoters and suppressors, including mutations
and mutation pairs, we adopted the permutation test method
based on ELI5 to compute feature importance for the prediction
model by measuring how scores decreased when a mutation or
mutation pair was not available. This method randomly shuffled
each input feature and computed the change in the model’s
predictive performance. Therefore, we could get AD-promoting
and suppressive mutations or co-mutations that were related to
cognitive impairment. To further expand our findings, we also
applied MI strategy with scikit-learn and Lime to rank mutation
importance scores [86, 88].

Results
Deep-SMCI outperforms existing algorithms
based on mutatome landscapes
By taking advantage of Bayesian optimization, we got cus-
tomized and optimized Deep-SMCI for predicting the cognitive

impairment of subjects based on mutation landscapes. To evalu-
ate the predictive performance of the Deep-SMCI, we compared
the model to the abovementioned control algorithms, including
DT, GB, SVR and EN after grid search optimization and GRU, LSTM
after Bayesian optimization in the aspect of MAE and RMSE based
on 10-fold cross-validation with five repeats from randomization.
The detailed hyperparameter space of baseline modeling
methods and optimized hyperparameter configurations of Deep-
SMCI based on mutations are shown in Supplementary Table 2.

As shown in Figure 3A, Deep-SMCI achieved the best MAE
and the least standard deviation (SD) of MAE compared with
the other four models. Deep-SMCI achieved MAE at 3.13 ± 0.151
(SD) when predicting ADAS-Cog-11 based on mutation landscape;
however, SVR got 3.81 ± 0.371 (SD), EN got 3.89 ± 0.347 (SD), DT
got 3.79 ± 0.382 (SD), GB got 4.03 ± 0.314 (SD), GRU got 3.62 ± 0.341
(SD) and LSTM got 4.14 ± 0.428 (SD). Deep-SMCI not only pre-
dicted ADAS-Cog-11 with a less MAE but also performs stable
performance. To note, although GRU and LSTM were applied to
sequence and time series data successfully, they did not perform
well in the task. The reason might be our mutation landscape
was not ‘real’ sequence data, and the order of the mutations
was not important, making Deep-SMCI with FC networks a better
candidate compared with the models with GRU and LSTM layers
[78, 79].

Furthermore, Deep-SMCI performed well in the aspect of RMSE.
Deep-SMCI achieved the best RMSE and the least SD of RMSE
compared with the other four models (Figure 3B). For example,
Deep-SMCI achieved RMSE at 4.16 ± 0.389 (SD) when predicting
ADAS-Cog-11 based on mutation landscape; however, SVR got
5.17 ± 0.730 (SD), EN got 5.09 ± 0.672 (SD), DT got 5.47 ± 0.793
(SD), GB got 6.21 ± 0.931 (SD), GRU got 4.65 ± 0.470 (SD) and LSTM

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
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Figure 4. Examples of mutation effectors in cognitive impairment. (A) CDC42 rs71016987 is an AD-suppressive mutation (t-test, P-value < 2.2e−16). (B)
LEP rs10258300 is an AD-suppressive mutation (t-test, P-value < 2.2e−16). (C) FOXO4 rs5981069 is an AD-promoting mutation (t-test, P-value = 0.0028).
(D) HSPA9 rs535407352 is an AD-promoting mutation (t-test, P-value = 0.0075).

got 5.19 ± 0.767 (SD). All these evaluations suggest the Bayesian
optimization managed to optimize the Deep-SMCI to the maxi-
mum extent and made the model perform best, even if the con-
trol algorithms performed reasonably well after being optimized.
The detailed predictive performance in this part is shown in
Supplementary Table 3.

Deep-SMCI ranks AD-associated mutations
based on custom effect scores
Considering that Deep-SMCI achieved prospective MAE and RMSE
compared with baselines, it was reasonable to apply the model to
dive into the mutations that might contribute to cognitive impair-
ment. Although there were high-dimension mutation profiles
(2 671 687) in the subjects, it was critical to know which mutations
might promote cognitive impairment and which mutations might
suppress cognitive impairment. To find these potential mutation
effectors, we applied the customized Deep-SMCI to the mutation
landscapes. Based on the permutation importance module in ELI5,
the Deep-SMCI computed the contribution of each mutation to
cognitive impairment and evaluated the mutations based on their
effect importance.

Of 2 671 687 unique mutations across the subjects, 1 353 199
(50.65%) mutations were assigned to 0 importance score, meaning
these mutations could not be directly relevant to the cognitive per-
formance of the subjects. For example, as a candidate gene for AD
susceptibility, multiple mutations of TP73 were found to be irrev-
erent with cognitive impairment, including rs6697769, rs10752739
and rs2181484 [89]. In addition, quite a few mutations are assigned
to high-importance scores. For example, MTOR rs4845987 and JUN
rs2760501 are classified as high impact mutations, and it had been
reported that MTOR was a culprit and crucial in both Aβ and tau

pathology and JNK/c-JUN cascade was activated in neurons of the
AD brain [90, 91]. These results could likely help illuminate and
understand the potential cause of cognitive disorders.

At the gene level, we summarized the mutation effects for
each gene and found the mutations of some genes are likely
to drive cognitive development, and the top 20 genes include
LRP1B, WWOX, MACROD2, FHIT, CTNNA3, CNTN5, PTPRN2, NRXN3,
CTNNA2, ERBB4, GPC6, CSMD3, GRM7, FRMD4A, NRG1, CAMTA1,
ASIC2, CTNND2, CDH4 and THSD7B. All these genes could enable
follow-up functional studies in the future given that the effect size
of mutations in these genes was dominant. In marked contrast,
LY6G6F, PPP1CA, HOXB7, LAMTOR2, GPX1, DDIT3, AGER, TAS2R9,
TNF, METTL1, CERS1, MIF, APEX1, H2AFX, PIGC, TERC, PMCH, HTRA2,
PINLYP and ATP5J2-PTCD1 would be less important in terms of
their mutations contributing to AD progression. The detailed
effect score for each gene is shown in Supplementary Table 4.

Deep-SMCI identifies promising AD effector
mutations
To facilitate the potential therapeutic target identification, we
focused on the top 20 000 potential AD effectors based on the
importance scores for cognitive impairment. Based on statistical
tests, we identified 527 AD-promoting mutations and 1459 AD-
suppressive mutations.

As shown in Figure 4A, CDC42 rs71016987 was negatively
associated with cognitive dysfunction significantly (t-test,
P-value < 2.2e−16). CDC42 had been found to be highly expressed
in AD patients compared with age-matched controls, and our
mutation finding could help elucidate the relationship between
this mutant’s differential expression and cognitive development
[92]. It had been reported that the low brain leptin signaling would

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
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worsen hippocampal function and decrease neuroprotective
effects such as tau and Aβ. Consistent with this observation,
we found LEP rs10258300 might suppress neurodegenerative
dysfunction (Figure 4B, t-test, P-value < 2.2e−16) [93]. In addi-
tion, we found that FOXO4 rs5981069 and HSPA9 rs535407352
would promote cognitive dysfunction (Figure 4C and D, t-test,
P-value = 0.0028 and 0.0075, respectively). To note, there was
evidence showing that these two genes were associated with
AD. For example, FOXO protein participated in protecting
neurons against Aβ-induced toxicity, and HSPA9 mRNA abnormal
expression was associated with AD patients [94, 95].

Moreover, we observed three types of AD genes. Although
there was evidence showing NRG1/ErbB4 complex could induce
neuroinflammation and reduce memory formation and accu-
mulation in neuritic plaques, we found the different mutations
of NRG1 could provide converse effects [96]. NRG1 rs6468112
might promote cognitive impairment (Supplementary Figure 1A,
t-test, P-value = 0.015), and NRG1 rs1554540779, however, seemed
to impede cognitive decline (Supplementary Figure 1B, t-test,
P-value = 0.0039). As for ADCY5, we found all mutations of this
gene were likely to be AD suppressive such as rs188403297
(Supplementary Figure 1C, t-test, P-value = 0.046). However, in
another gene RAD52, all mutation effects for this gene were likely
to promote cognitive impairment (Supplementary Figure 1D,
t-test, P-value = 0.032). The complete list of all AD mutation
effectors is shown in Supplementary Table 5.

Deep-CMCI outperforms other computational
methods based on co-mutation landscapes
Furthermore, we also customized and optimized Deep-CMCI
for predicting cognitive impairment of subjects based on co-
mutation landscapes. Similarly, we compared the model to
the abovementioned DT, GB, SVR and EN after grid search
optimization and GRU, and LSTM after Bayesian optimization
in the aspect of MAE and RMSE based on 10-fold cross-
validation with five repeats from randomization. The detailed
information for the optimization hyperparameter of Deep-CMCI
and grid hyperparameter space of those baselines is shown
in Supplementary Table 2. As shown in Figure 3C, Deep-CMCI
achieved the best MAE and the least SD of MAE compared with
the other four models. In this co-mutation landscape, Deep-CMCI
achieved MAE at 3.01 ± 0.080 (SD) when predicting ADAS-Cog-
11; however, SVR only got 3.78 ± 0.235 (SD), EN got 3.88 ± 0.247
(SD), DT got 4.06 ± 0.286 (SD), GB got 4.37 ± 0.321 (SD), GRU got
3.46 ± 0.212 (SD) and LSTM got 3.92 ± 0.321 (SD).

In addition, Deep-CMCI achieved the best RMSE and the least
SD of RMSE compared with the other four models (Figure 3D). In
the aspect of RMSE, Deep-CMCI achieved 4.15 ± 0.149 (SD) when
predicting ADAS-Cog-11 based on the co-mutation landscape;
however, SVR got 5.17 ± 0.467 (SD), EN got 5.11 ± 0.465 (SD), DT
got 5.31 ± 0.512 (SD), GB got 5.38 ± 0.495 (SD), GRU got 4.86 ± 0.311
(SD), LSTM got 5.76 ± 0.542 (SD). The detailed predictive perfor-
mance in this part is shown in Supplementary Table 3.

Compared with the predictive performance of the single muta-
tion landscape, Deep-CMCI performed even better based on the
co-mutation landscape, suggesting the co-mutation landscape we
used was more comprehensive and capable of representing the
cognitive status of AD subjects. To note, it was found most of the
deep learning models in the performance evaluation part gen-
erally performed better than other traditional machine learning
methods in predicting AD impairment scores based on muta-
tion landscapes and co-mutation landscapes. A possible expla-
nation for this is that deep learning models possess much richer

representability, and are capable of capturing complex features
such as the interactions between mutations and mutations or
cognitive scores, making learning intrinsic characteristics much
easier [97].

Deep-CMCI identifies potential AD-liable
co-mutation effectors
Given that Deep-CMCI achieved intriguing MAE and RMSE com-
pared with baselines, it was necessary to apply the model to
dive into the co-mutation contributing to cognitive impairment
as well.

To find the potential co-mutation effectors, we applied the
Deep-CMCI to the co-mutation landscapes. Based on permutation
tests, the model evaluated the contribution of each co-mutation
to cognitive impairment and ranked the co-mutations based on
their effect score. Here we picked out the top 20 000 potential
AD co-mutation effectors based on the importance scores for
cognitive impairment and finally identified 1366 AD co-promoting
mutations and 1187 AD co-suppressive mutations.

As shown in Figure 5, PARP1_rs2027440-ERCC4_rs3784872 and
TP63_rs4234613-RAD51B_rs117921607 co-mutation pairs were
negatively associated with cognitive impairment significantly
(Figure 5A and B, t-tests, P-value = 0.022, 0.0012, respectively).
However, FAT4_rs10025859-CSMD3_rs11783840 and CSMD3_
rs10109993-FAT4_rs10025859 were positively associated with
cognitive decline (Figure 5C and D, t-tests, P-value = 0.041, 0.031,
respectively). Interestingly, there was evidence showing that
these four gene pairs exhibited corresponding interactions
in known interactome networks. Based on the gene network
from HumanNet v3, of 2553 co-mutation effectors, there were
existing gene networks for 60 co-promoting mutations and 48
co-suppressive mutations we identified [98]. The list of all AD
co-mutation effectors is shown in Supplementary Table 6.

AD mutation and co-mutation effectors discovery
by other interpretability strategies
To further find more potential mutation and co-mutation effec-
tors, we also adopted MI and Lime to rank and identify muta-
tions and co-mutations. Similarly, we picked out the top 20 000
mutations and co-mutations based on the importance scores, to
identify potential effectors based on statistical tests.

For AD mutations, we identified 624 and 611 AD-promoting
effectors by Lime and MI, respectively, and there were four
shared AD-promoting effectors by the three methods, including
rs4951685, rs7825574, rs11988948, rs33983420 (Supplementary
Figure 2A); we identified 1362 and 1465 AD suppressive effectors
by Lime and MI, respectively, and there were five shared
AD suppressive effectors by the three methods, including
rs1286756, rs1540876, rs2005768, rs75655297 and rs231305
(Supplementary Figure 2B). For AD co-mutations, we identified
1130 and 1140 AD co-promoting effectors by Lime and MI,
respectively, and there were 137 shared AD co-promoting
effectors by the three methods (Supplementary Figure 2C); we
identified 1181 and 1269 AD co-suppressive effectors by Lime
and MI, respectively, and there were 50 shared AD co-suppressive
effectors by the three methods (Supplementary Figure 2D). The
list of AD mutation and co-mutation effectors are shown in
Supplementary Table 7.

The primary reason why there were only a small portion of
effectors overlapping might be the distinct characteristics of the
three strategies: feature importance was measured by examining
how much the score decreases when a feature was removed in
the permutation test; MI was calculated between two features

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad030#supplementary-data
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Figure 5. Examples of co-mutation effectors in cognitive impairment. (A) PARP1_rs2027440-ERCC4_rs3784872 is an AD-suppressive mutation pair
(t-test, P-value = 0.022). (B) TP63_rs4234613-RAD51B_rs117921607 is an AD-suppressive mutation pair (t-test, P-value = 0.0012). (C) FAT4_rs10025859-
CSMD3_rs11783840 is an AD-promoting mutation pair (t-test, P-value = 0.041). (D) CSMD3_rs10109993-FAT4_rs10025859 is an AD-promoting mutation
pair (t-test, P-value = 0.031).

and measured the reduction in uncertainty for one feature given a
known value of the other feature; in the case of Lime, it perturbed
the data sample of interest, and learned a sparse linear model
around it as an explanation. Another reason might be that we
only prioritized top 20 000 mutations and co-mutations from the
three algorithms. If we were interested in those mutations and
co-mutations of lower ranking, there would be a larger overlap of
mutation effectors among the three methods.

Discussion
As one of the most prevalent and difficult diseases to treat, AD
is typically characterized by dementia, which often begins with
a slow decline in cognitive function especially the memory of
subjects, and gradually becomes more severe and incapacitating.
Research reports have shown that genetic factors may play a
vital role in AD development and progression [7, 14–19, 99, 100],
therefore understanding the genetic causes of AD may benefit
its early detection, prevention and even therapy. Although there
were plenty of works focused on AD genetics in the past decades,
the molecular mechanisms of AD development remain enigmatic,
and the genetic etiology of most AD cases is still restricted and
lagging. There are quite a few restrictions in the previous AD
works: most works are focused on several genes or variants,
making their findings low throughput; small sample size and even
being restricted to familial individuals or populations make iden-
tifying rare variants challenging and even cannot be confirmed
across independent research works; failure to take account into

the interaction between genes and variants and lacking a unified
and comprehensive metric characterizing cognition impairment
of subjects are also important reasons why genetic findings are
not interpretable enough for AD cases and fluctuating across
existing AD works [25, 29, 30, 38–49].

The method we propose not only can predict the cognitive
impairment of subjects robustly but also overcome the limi-
tations of previous research works and provide deep insights
into AD development and progression. By using optimized Deep-
SMCI and Deep-CMCI, researchers can evaluate the cognitive
status of potential subjects based on available mutation profiles.
Besides, based on whole-genome mutation profiles of ∼1000 AD-
associated genes, our method systemically evaluates the effects
of those mutations on cognitive development and identifies AD
mutation effectors in a comprehensive and high-throughput way,
which can offer useful resources and facilitate other relevant AD
research works. Network medicine has been proven to be more
effective and increasingly appreciated for dissecting the genetic
organization of complicated diseases such as AD, and our method
integrates the interactions between mutations in AD-associated
genes and derives comprehensive co-mutation effectors in AD
cases, laying a solid co-mutation landscape of AD. Our results
further support that co-mutations may play an important role in
AD development, if not more than single mutations.

To further illuminate the mechanism of AD systematically,
there are several directions as future perspectives. As AD is
a known age-dependent disorder, more evidence shows there
is a progressive process during AD development and dynamic
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changes in mutational signatures occur for the same AD subject
[101–103]. For example, the effect of APOE ε4 varies depending
on the stage of AD [103]. Therefore, it will be worth exploring
and tracking the mutation profiles of the same AD subjects
longitudinally if data sets are available, and this will depict a
better mutation landscape change model as AD progresses and
benefit understanding the mechanism of AD further. In addition,
aneuploidy, copy number variation, as well as transposable
element mobilization are found to be involved in AD development
[104–107]. For instance, APP copy number gains are enriched
in the majority of AD neurons compared with control neurons
[105]. As the next-generation sequencing technologies advance,
integrating this information will expand the knowledge of AD.
Moreover, genetic interactions existing in brain tissues are far
more diverse and complicated, therefore how to characterize the
complex interactions and incorporate them into AD development
will be a long-standing topic [108]. Last but not least, several types
of neurodegenerative diseases including Parkinson’s disease,
amyotrophic lateral sclerosis and Huntington’s disease are found
to share clinical and pathologic features with AD, and integrating
those overlapping genetic factors and exclusive genetic factors
may be helpful in understanding AD mechanisms [14, 109–111].
For example, these common features of the abovementioned
diseases might be vital to the abnormal protein aggregates in the
nervous system. Together, our findings here provide a valuable
resource for further AD research in the scientific community, and
also could possibly facilitate the development of more effective
diagnosis and treatment for AD.

Key Points

• A robust deep learning model for liable mutations and
co-mutations responsible in Alzheimer’s disease.

• Accurate assessment of mutation prediction is critical
with significant clinical implication, and our prediction
models could robustly predict drug targets and combi-
nations with high confidence.

• Our deep learning model could identify landmark signa-
tures associated with neurological disease development,
and provide novel and effective therapeutic targets for
hard-to-treat disease.
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Supplementary data are available online at https://academic.oup.
com/bib.
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