69 research outputs found

    Neurocognitive Development of the Resolution of Selective Visuo-Spatial Attention: Functional MRI Evidence From Object Tracking

    Get PDF
    Our ability to select relevant information from the environment is limited by the resolution of attention – i.e., the minimum size of the region that can be selected. Neural mechanisms that underlie this limit and its development are not yet understood. Functional magnetic resonance imaging (fMRI) was performed during an object tracking task in 7- and 11-year-old children, and in young adults. Object tracking activated canonical fronto-parietal attention systems and motion-sensitive area MT in children as young as 7 years. Object tracking performance improved with age, together with stronger recruitment of parietal attention areas and a shift from low-level to higher-level visual areas. Increasing the required resolution of spatial attention – which was implemented by varying the distance between target and distractors in the object tracking task – led to activation increases in fronto-insular cortex, medial frontal cortex including anterior cingulate cortex (ACC) and supplementary motor area, superior colliculi, and thalamus. This core circuitry for attentional precision was recruited by all age groups, but ACC showed an age-related activation reduction. Our results suggest that age-related improvements in selective visual attention and in the resolution of attention are characterized by an increased use of more functionally specialized brain regions during the course of development

    Resistindo ao desenvolvimento neocolonial: a luta do povo de Andalgalá contra projetos megamineiros

    Get PDF
    A América Latina vem experimentando uma nova era de declarada fé dos governos no mito do desenvolvimento, em articulação com a expansão de políticas extrativistas exportadoras em um contexto de renovada dependência. A face mais dramática do extrativismo na região tem sido a crescente presença de corporações mineiras transnacionais apoiadas por governos nacionais e regionais e por instituições internacionais financeiras e de apoio ao desenvolvimento, e intensamente resistidas por movimentos sociais populares. Neste artigo apresentamos o caso de Andalgalá (uma pequena cidade na Província de Catamarca, na Argentina) e as lutas do povo contra corporações mineiras transnacionais e seus aliados. Na tradição da Filosofia da Libertação e do método ana-dialético de Dussel, nos engajamos com o que tem sido denominado "comunidades argentinas do NÃO", expressando sua oposição a formas neocoloniais de desenvolvimento e gestão. Neste artigo estamos especificamente interessados em compreender como dois dispositivos gerencialistas usados pelas corporações mineiras, responsabilidade social corporativa (RSC) e pactos de governança, impactam a luta do povo. Acima de tudo, este artigo oferece instantâneos de batalhas na linha de frente do extrativismo. Esperamos ter dado voz àquelas pessoas que normalmente não são ouvidas, criando um espaço para suas visões sobre um tipo diferente de desenvolvimento.</jats:p

    The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: a systematic review

    Get PDF
    BACKGROUND: Short bowel syndrome (SBS) is defined as the malabsorptive state that often follows massive resection of the small intestine. Most cases originate in the newborn period and result from congenital anomalies. It is associated with a high morbidity, is potentially lethal and often requires months, sometimes years, in the hospital and home on total parenteral nutrition (TPN). Long-term survival without parenteral nutrition depends upon establishing enteral nutrition and the process of intestinal adaptation through which the remaining small bowel gradually increases its absorptive capacity. The purpose of this article is to perform a descriptive systematic review of the published articles on the effects of TPN on the intestinal immune system investigating whether long-term TPN induces bacterial translocation, decreases secretory immunoglobulin A (S-IgA), impairs intestinal immunity, and changes mucosal architecture in children with SBS. METHODS: The databases of OVID, such as MEDLINE and CINAHL, Cochran Library, and Evidence-Based Medicine were searched for articles published from 1990 to 2001. Search terms were total parenteral nutrition, children, bacterial translocation, small bowel syndrome, short gut syndrome, intestinal immunity, gut permeability, sepsis, hyperglycemia, immunonutrition, glutamine, enteral tube feeding, and systematic reviews. The goal was to include all clinical studies conducted in children directly addressing the effects of TPN on gut immunity. RESULTS: A total of 13 studies were identified. These 13 studies included a total of 414 infants and children between the ages approximately 4 months to 17 years old, and 16 healthy adults as controls; and they varied in design and were conducted in several disciplines. The results were integrated into common themes. Five themes were identified: 1) sepsis, 2) impaired immune functions: In vitro studies, 3) mortality, 4) villous atrophy, 5) duration of dependency on TPN after bowel resection. CONCLUSION: Based on this exhaustive literature review, there is no direct evidence suggesting that TPN promotes bacterial overgrowth, impairs neutrophil functions, inhibits blood's bactericidal effect, causes villous atrophy, or causes to death in human model. The hypothesis relating negative effects of TPN on gut immunity remains attractive, but unproven. Enteral nutrition is cheaper, but no safer than TPN. Based on the current evidence, TPN seems to be safe and a life saving solution

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection

    Full text link

    Lemurs in mangroves and other flooded habitats

    Get PDF

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Superior intraparietal sulcus controls the variability of visual working memory precision

    Get PDF
    Contains fulltext : 162177.pdf (publisher's version ) (Open Access)Limitations of working memory (WM) capacity depend strongly on the cognitive resources that are available for maintaining WM contents in an activated state. Increasing the number of items to be maintained in WM was shown to reduce the precision of WM and to increase the variability of WM precision over time. Although WM precision was recently associated with neural codes particularly in early sensory cortex, we have so far no understanding of the neural bases underlying the variability of WM precision, and how WM precision is preserved under high load. To fill this gap, we combined human fMRI with computational modeling of behavioral performance in a delayed color-estimation WM task. Behavioral results replicate a reduction of WM precision and an increase of precision variability under high loads (5 > 3 > 1 colors). Load-dependent BOLD signals in primary visual cortex (V1) and superior intraparietal sulcus (IPS), measured during the WM task at 2-4 s after sample onset, were modulated by individual differences in load-related changes in the variability of WM precision. Although stronger load-related BOLD increase in superior IPS was related to lower increases in precision variability, thus stabilizing WM performance, the reverse was observed for V1. Finally, the detrimental effect of load on behavioral precision and precision variability was accompanied by a load-related decline in the accuracy of decoding the memory stimuli (colors) from left superior IPS. We suggest that the superior IPS may contribute to stabilizing visual WM performance by reducing the variability of memory precision in the face of higher load. Significance statement: This study investigates the neural bases of capacity limitations in visual working memory by combining fMRI with cognitive modeling of behavioral performance, in human participants. It provides evidence that the superior intraparietal sulcus (IPS) is a critical brain region that influences the variability of visual working memory precision between and within individuals (Fougnie et al., 2012; van den Berg et al., 2012) under increased memory load, possibly in cooperation with perceptual systems of the occipital cortex. These findings substantially extend our understanding of the nature of capacity limitations in visual working memory and their neural bases. Our work underlines the importance of integrating cognitive modeling with univariate and multivariate methods in fMRI research, thus improving our knowledge of brain-behavior relationships.13 p
    corecore