591 research outputs found

    Multiscale magnetic underdense regions on the solar surface: Granular and Mesogranular scales

    Get PDF
    The Sun is a non-equilibrium dissipative system subjected to an energy flow which originates in its core. Convective overshooting motions create temperature and velocity structures which show a temporal and spatial evolution. As a result, photospheric structures are generally considered to be the direct manifestation of convective plasma motions. The plasma flows on the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns which are observed as a variety of multiscale magnetic patterns. High resolution magnetograms of quiet solar surface revealed the presence of magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales we used a "voids" detection method. The computed voids distribution shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at 5-10 Mm mesogranular scales. The absence of preferred scales of organization in the 2-10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale

    Why decision support systems are important for medical education

    Get PDF
    During the last decades the inclusion of digital tools in health education has rapidly lead to a continuously enlarging digital era. All the online interactions between learners and tutors, the description, creation, reuse and sharing of educational digital resources and the interlinkage between them in conjunction with cheap storage technology has led to an enormous amount of educational data. Medical education is a unique type of education due to accuracy of information needed, continuous changing competences required and alternative methods of education used. Nowadays medical education standards provide the ground for organizing the educational data and the paradata. Analysis of such education data through education data mining techniques is in its infancy, but decision support systems for medical education need further research. To the best of our knowledge, there is a gap and a clear need for identifying the challenges for decision support systems in medical education in the era of medical education standards. Thus, in this paper the role and the attributes of such a decision support system for medical education are delineated and the challenges and vision for future actions are identified

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Predictive value of the CLL-IPI in CLL patients receiving chemo-immunotherapy as first-line treatment

    Get PDF
    An international collaboration has led to the development of a comprehensive tool [CLL-IPI international prognostic index for CLL] for the predicting of overall survival (OS) in chronic lymphocytic leukemia (CLL).1 CLL-IPI was based on data collected from 3500 CLL patients and was based on the following parameters: TP53 deletion and/or mutation, IGHV mutational status, \u3b22-microglobulin plasma levels, clinical stage, and age. CLL-IPI provides the means to stratify CLL patients in the daily clinical practice (Supplementary Table 1).1 Although validated for OS2-4 and time to first treatment (TTFT),5 the predictive value of CLL-IPI on progression-free survival (PFS) has until now only been demonstrated in a single study on patients treated with chlorambucil (CLB), as monotherapy, or in combination with obinutuzumab or rituximab, as a first-line approach (CLL11 study),6 and presented as a poster at the annual meeting of the American Society of Hematology (ASH) in 2016

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore