163 research outputs found

    Orbitofrontal cortex and drug use during adolescence : role of prenatal exposure to maternal smoking and BDNF genotype

    Get PDF
    Context : Prenatal exposure to maternal cigarette smoking (PEMCS) may affect brain development and behavior in adolescent offspring. Objective : To evaluate the involvement of the orbitofrontal cortex (OFC) in mediating the relationship between PEMCS and substance use. Design : Cross-sectional analyses from the Saguenay Youth Study aimed at evaluating the effects of PEMCS on brain development and behavior among adolescents. Nonexposed adolescents were matched with adolescents exposed prenatally to cigarette smoking by maternal educational level. Participants and Setting : A French Canadian founder population of the Saguenay–Lac-Saint-Jean region of Quebec, Canada.The behavioral data set included 597 adolescents (275 sibships; 12-18 years of age), half of whom were exposed in utero to maternal cigarette smoking. Analysis of cortical thickness and genotyping were performed using available data from 314 adolescents. Main Outcome Measures : The likelihood of substance use was assessed with the Diagnostic Interview Schedule for Children Predictive Scales. The number of different drugs tried by each adolescent was assessed using another questionnaire. Thickness of the OFC was estimated from T1-weighted magnetic resonance images using FreeSurfer software. Results : Prenatal exposure to maternal cigarette smoking is associated with an increased likelihood of substance use. Among exposed adolescents, the likelihood of drug experimentation correlates with the degree of OFC thinning. In nonexposed adolescents, the thickness of the OFC increases as a function of the number of drugs tried. The latter effect is moderated by a brain-derived neurotrophic factor (BDNF) genotype (Val66Met). Conclusions : We speculate that PEMCS interferes with the development of the OFC and, in turn, increases the likelihood of drug use among adolescents. In contrast, we suggest that, among nonexposed adolescents, drug experimentation influences the OFC thickness via processes akin to experience-induced plasticity

    Aquatic mammal fossils in Latin America – a review of records, advances and challenges in research in the last 30 years

    Full text link
    Records of aquatic mammal fossils (e.g. cetaceans, pinnipeds, sirenians, mustelids, and desmostylians) from Latin America (Mexico to Tierra del Fuego, including Antartica) span since the mid-1800s. Aquatic mammal fossils received little attention from the scientific community, with most of the first studies conducted by Northern Hemisphere researchers. Over the last 30 years, paleontological research in Latin America has increased considerably, with descriptions of several new species and revisions of published original records. The Latin American fossil record of marine mammals spans from the Eocene to the Pleistocene, with formations and specimens of global significance. All three main groups of cetaceans are represented in the continent (Archaeoceti, Mysticeti, and Odontoceti). Pinnipedia are represented by the families Otariidae and Phocidae, with records starting in the Middle Miocene. Both living families of Sirenia (Trichechidae and Dugongidae) are recorded. While less common, but still relevant, records of desmostylians and mustelids are known from Oligocene and Miocene deposits. This review provides a summary of the aquatic mammals known to date, with a special focus on the advances and developments of the last 30 years, since Cozzuol’s (1996) review of the South American fossil record. An up-to-date complete list of species based on the literature and unpublished data is also provided. The study also provides future directions for paleontological research in Latin America, and discusses the challenges and opportunities in the field, including the emergence of a strong new generation of Latin American researchers, many of whom are women. Keywords: Cetacea, Pinnipedia, Sirenia, Southern Hemispher

    A Generalized Framework for Quantifying the Dynamics of EEG Event-Related Desynchronization

    Get PDF
    Brains were built by evolution to react swiftly to environmental challenges. Thus, sensory stimuli must be processed ad hoc, i.e., independent—to a large extent—from the momentary brain state incidentally prevailing during stimulus occurrence. Accordingly, computational neuroscience strives to model the robust processing of stimuli in the presence of dynamical cortical states. A pivotal feature of ongoing brain activity is the regional predominance of EEG eigenrhythms, such as the occipital alpha or the pericentral mu rhythm, both peaking spectrally at 10 Hz. Here, we establish a novel generalized concept to measure event-related desynchronization (ERD), which allows one to model neural oscillatory dynamics also in the presence of dynamical cortical states. Specifically, we demonstrate that a somatosensory stimulus causes a stereotypic sequence of first an ERD and then an ensuing amplitude overshoot (event-related synchronization), which at a dynamical cortical state becomes evident only if the natural relaxation dynamics of unperturbed EEG rhythms is utilized as reference dynamics. Moreover, this computational approach also encompasses the more general notion of a “conditional ERD,” through which candidate explanatory variables can be scrutinized with regard to their possible impact on a particular oscillatory dynamics under study. Thus, the generalized ERD represents a powerful novel analysis tool for extending our understanding of inter-trial variability of evoked responses and therefore the robust processing of environmental stimuli

    Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami

    Get PDF
    The September 2018, Mw 7.5 Sulawesi earthquake occurring on the Palu-Koro strike-slip fault system was followed by an unexpected localized tsunami. We show that direct earthquake-induced uplift and subsidence could have sourced the observed tsunami within Palu Bay. To this end, we use a physics-based, coupled earthquake–tsunami modeling framework tightly constrained by observations. The model combines rupture dynamics, seismic wave propagation, tsunami propagation and inundation. The earthquake scenario, featuring sustained supershear rupture propagation, matches key observed earthquake characteristics, including the moment magnitude, rupture duration, fault plane solution, teleseismic waveforms and inferred horizontal ground displacements. The remote stress regime reflecting regional transtension applied in the model produces a combination of up to 6 m left-lateral slip and up to 2 m normal slip on the straight fault segment dipping 65∘ East beneath Palu Bay. The time-dependent, 3D seafloor displacements are translated into bathymetry perturbations with a mean vertical offset of 1.5 m across the submarine fault segment. This sources a tsunami with wave amplitudes and periods that match those measured at the Pantoloan wave gauge and inundation that reproduces observations from field surveys. We conclude that a source related to earthquake displacements is probable and that landsliding may not have been the primary source of the tsunami. These results have important implications for submarine strike-slip fault systems worldwide. Physics-based modeling offers rapid response specifically in tectonic settings that are currently underrepresented in operational tsunami hazard assessment

    Comprehensive Analysis of NRG1 Common and Rare Variants in Hirschsprung Patients

    Get PDF
    Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. The RET proto-oncogene is the major gene for HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. Many other genes have been described to be associated with the pathology, as NRG1 gene (8p12), encoding neuregulin 1, which is implicated in the development of the enteric nervous system (ENS), and seems to contribute by both common and rare variants. Here we present the results of a comprehensive analysis of the NRG1 gene in the context of the disease in a series of 207 Spanish HSCR patients, by both mutational screening of its coding sequence and evaluation of 3 common tag SNPs as low penetrance susceptibility factors, finding some potentially damaging variants which we have functionally characterized. All of them were found to be associated with a significant reduction of the normal NRG1 protein levels. The fact that those mutations analyzed alter NRG1 protein would suggest that they would be related with HSCR disease not only in Chinese but also in a Caucasian population, which reinforces the implication of NRG1 gene in this pathology

    Slow Solar Wind Connection Science during Solar Orbiter’s First Close Perihelion Passage

    Get PDF
    The Slow Solar Wind Connection Solar Orbiter Observing Plan (Slow Wind SOOP) was developed to utilize the extensive suite of remote-sensing and in situ instruments on board the ESA/NASA Solar Orbiter mission to answer significant outstanding questions regarding the origin and formation of the slow solar wind. The Slow Wind SOOP was designed to link remote-sensing and in situ measurements of slow wind originating at open–closed magnetic field boundaries. The SOOP ran just prior to Solar Orbiter’s first close perihelion passage during two remote-sensing windows (RSW1 and RSW2) between 2022 March 3–6 and 2022 March 17–22, while Solar Orbiter was at respective heliocentric distances of 0.55–0.51 and 0.38–0.34 au from the Sun. Coordinated observation campaigns were also conducted by Hinode and IRIS. The magnetic connectivity tool was used, along with low-latency in situ data and full-disk remote-sensing observations, to guide the target pointing of Solar Orbiter. Solar Orbiter targeted an active region complex during RSW1, the boundary of a coronal hole, and the periphery of a decayed active region during RSW2. Postobservation analysis using the magnetic connectivity tool, along with in situ measurements from MAG and SWA/PAS, showed that slow solar wind originating from two out of three of the target regions arrived at the spacecraft with velocities between ∼210 and 600 km s−1. The Slow Wind SOOP, despite presenting many challenges, was very successful, providing a blueprint for planning future observation campaigns that rely on the magnetic connectivity of Solar Orbiter

    The Human Phenotype Ontology in 2024: phenotypes around the world

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    Jet energy measurement and its systematic uncertainty in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton–proton collision data with a centre-of-mass energy of √s=7 TeV corresponding to an integrated luminosity of 4.7 fb −1. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-kt algorithm with distance parameters R=0.4 or R=0.6, and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a Z boson, for 20≤pTjet1 TeV. The calibration of forward jets is derived from dijet pT balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-pT jets at |η|=4.5. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5–3 %

    The Psychological Science Accelerator's COVID-19 rapid-response dataset

    Get PDF
    corecore